Кошки. Породы, стерилизация

Чему учить ребенка в 3. «Не хочу! Не буду! Не надо! Я сам!» — кризис трехлетнего возраста: признаки кризиса и как его преодолеть

Все живое на планете состоит из многочисленных клеток. Они поддерживают упорядоченность своей организации с помощью генетической информации, содержащейся в ядре, которая сохраняется, передается и реализуется высокомолекулярными сложными соединениями — нуклеиновыми кислотами. Кислоты эти, в свою очередь, состоят из мономерных звеньев – нуклеотидов.

Вконтакте

Роль нуклеиновых кислот переоценить невозможно. Нормальная жизнедеятельность организма определяется стабильностью их структуры. Если в строении происходят любые отклонения, меняется количество либо последовательность — это обязательно приводит к изменениям в клеточной организации. Изменяется активность физиологических процессов и жизнедеятельность клеток .

Понятие нуклеотида

Как и белки, нуклеиновые кислоты необходимы для жизни . Это генетический материал всех живых организмов, включая вирусы.

Выяснение структуры одного из двух типов нуклеиновых кислот ДНК позволило понять, каким образом в живых организмах хранится информация, необходимая для регулирования жизнедеятельности и как она передается потомству. Нуклеотид представляет собой мономерную единицу, образующую соединения более сложные — нуклеиновые кислоты. Без них невозможно хранение , воспроизведение и передача генетической информации. Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.Из них строятся длинные молекулы — полинуклеотиды.Чтобы разобраться со структурой полинуклеотида следует понять строение нуклеотидов.

Что такое нуклеотид? Молекулы ДНК собраны из мелких мономерных соединений. Другими словами, нуклеотид — это органическое сложное соединение, представляющее собой составную часть нуклеиновых кислот и других биологических соединений, необходимых для жизнедеятельности клетки.

Состав и основные свойства нуклеотидов

В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:

  1. Пентоза или пятиугольный сахар:
  • дезоксирибоза. Эти нуклеотиды называют дезоксирибонуклеотидами. Они входят в состав ДНК;
  • рибоза. Нуклеотиды входят в состав РНК и называются рибонуклеотидами.

2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом

3. Фосфатная группа, состоящая из остатков фосфорной кислоты (в количестве от одного до трех). Присоединяется к углероду сахара эфирными связями, образующими молекулу нуклеотида.

Свойствами нуклеотидов являются:

  • участие в метаболизме и других физиологических процессах, которые протекают в клетке;
  • осуществление контроля над репродукцией и ростом;
  • хранение информации о наследуемых признаках и о структуре белка.

Нуклеиновые кислоты

Сахар в нуклеиновых кислотах представлен пентозой. В РНК пятиуглеродный сахар называется рибозой, в ДНК - дезоксирибозой. В каждой молекуле пентозы пять атомов углерода, из которых четыре образуют кольцо с атомом кислорода, а пятый атом входит в группу НО-СН2.

В молекуле положение атома углерода обозначается цифрой со штрихом (например:1C´, 3C´, 5C´). Так как у вех процессов считывания с молекулы нуклеиновой кислоты наследственной информации имеется строгая направленность, нумерация углеродных атомов и их расположение служат указателем верного направления.

С первым углеродным атомом 1C´ в молекуле сахара соединяется азотистое основание.

К третьему и пятому углеродным атомам по гидроксильной группе (3C´, 5C´) присоединяется остаток фосфорной кислоты, который определяет химическую принадлежность к группе кислот ДНК и РНК.

Состав азотистых оснований

Виды нуклеотидов по азотистому основанию ДНК:

Первые два класса — пурины:

  • аденин (А);
  • гуанин (Г).

Два последние относятся к классу пиримидинов:

  • тимин (Т);
  • цитозин (Ц).

Пуриновые соединения по молекулярной массе тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому соединению представлены:

  • гуанином;
  • аденином;
  • урацитолом;
  • цитозином.

Так же, как тимин, урацил является пиримидиновым основанием. Нередко в научной литературе азотистые основания обозначаются латинскими буквами (A, T, C, G, U).

Пиримидины, а именно тимин, цитозин, урацил представлены шестичленным кольцом, состоящим из двух атомов азота и четырех атомов углерода, последовательно пронумерованных, от 1 до 6.

Пурины (гуанин и аднин) состоят из имидазола и пиримидина. В молекулах пуриновых оснований четыре атома азота и пять атомов углерода. У каждого атома имеется свой номер от 1 дот 9.

Результатом соединений азотистых остатков с остатками пентозы является нуклеозид. Нуклеотид – это соединение фосфатной группы с нуклеозидом.

Образование фосфодиэфирных связей

Следует разобраться в вопросе о том, как нуклеотиды соединяются в полипептидную цепь, сколько их участвует в процессе,образуя молекулу нуклеиновой кислоты за счет фосфодиэфирных связей.

При взаимодействии двух нуклеотидов образуется динуклеотид. Новое соединение образуется путем конденсации, когда возникает фосфодиэфирная связь между гидроксигруппой пентозы одного мономера и фосфатным остатком другого.

Синтезом полинуклеотида является многочисленное повторение этой реакции. Сборка полинуклеотидов представляет сложный процесс, обеспечивающей рост цепи с одного конца.

Молекулы ДНК, как и молекулы белка, имеют первичную, вторичную структуры и третичную. Первичную структуру в цепи ДНК определяет последовательность нуклеотидов. В основе вторичной структуры лежит формирование водородных связей. При синтезе двойной спирали ДНК имеется определенная закономерность и последовательность: тимин одной цепи соответствует аденину другой; цитозин – гуанину, и наоборот. Соединения нуклеидов создают прочную связь цепей, с равным между ними расстоянием.

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Функции и свойства ДНК

Основные функции ДНК:

  • сохраняет наследственную информацию;
  • передача (удвоение/репликация);
  • транскрипция, реализация;
  • ауторепродукция ДНК. Функционирование репликона.

Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.

Репликон представляет собой единицу репликационного процесса участка генома, подконтрольного одной точке инициации репликации. Как правило, геном прокариот -это репликон. Репликация от точки инициации идет в обе стороны, иногда с различной скоростью.

Молекула РНК – структура

РНК является одной полинуклеотидной цепочкой, которая образуется через ковалентные связи между фосфатным остатком и пентозой. Она короче ДНК, имеет другую последовательность и различается по видовому составу азотистых соединений. Пиримидиновое основание тимина в РНК заменяется урацилом.

РНК может быть трех видов, в зависимости от тех функций, которые выполняются в организме:

  • информационная (иРНК) — очень разнообразная по нуклеотидному составу. Она является своего рода матрицей для синтеза белковой молекулы, переносит генетическую информацию к рибосомам от ДНК;
  • транспортная (тРНК) в среднем состоит из 75-95 нуклеотидов. Она переносит необходимую аминокислоту в рибосоме к месту синтеза полипептида. У каждого вида тРНК и есть своя, присущая только ему последовательность нуклеотидов или мономеров;
  • рибосомальная (рРНК) обычно одержит от 3000 до 5000 нуклеотидов. Рибосом является необходимым структурным ом компонент участвующим в важнейшем процессе, происходящем в клетке – биосинтезе белка.

Роль нуклеотида в организме

В клетке нуклеотиды выполняют важные функции:

  • являются биорегуляторами;
  • используются как структурные блоки для нуклеиновых кислот;
  • входят в состав главного источника энергии в клетке — АТФ;
  • участвуют во многочисленных обменных процессах в клетках;
  • являются переносчиками восстановительных эквивалентов в клетках (ФАД, НАДФ+; НАД+; ФМН);
  • могут рассматриваться как вестники регулярного внеклеточного синтеза (цГМФ, цАМФ).

Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.









Нуклеиновые кислоты , как и белки, необходимы для жизни. Они представляют собой генетический материал всех живых организмов вплоть до самых простых вирусов. Название «нуклеиновые кислоты» отражает тот факт, что локализуются они главным образом в ядре (nucleus - ядро). При специфическом окрашивании на нуклеиновые кислоты ядра бывают очень хорошо видны в световом микроскопе.

Выяснение структуры ДНК (дезоксирибонуклеиновой кислоты) - одного из двух существующих типов нуклеиновых кислот - открыло новую эпоху в биологии, так как позволило, наконец, понять, каким образом живые организмы хранят информацию, необходимую для регулирования их жизнедеятельности и каким образом передают эту информацию своему потомству. Выше мы уже отметили, что нуклеиновые кислоты состоят из мономерных единиц, называемых нуклеотидами. Из нуклеотидов строятся чрезвычайно длинные молекулы - полинуклеотиды.

Чтобы понять структуру полинуклеотидов, необходимо, следовательно, сначала ознакомиться с тем, как построены нуклеотиды .

Нуклеотиды. Строение нуклеотидов

Молекула нуклеотида состоит из трех частей - пятиуглеродного сахара, азотистого основания и фосфорной .

Сахар, входящий в состав нуклеотида , содержит пять углеродных атомов, т. е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот - рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу. В дезоксирибозе - ОН-группа при 2-м атоме углерода заменена на атом Н, т. е. в ней на один атом кислорода меньше, чем в рибозе.

В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов и два - к классу пиримидинов. Основной характер этим соединениям придает включенный в кольцо азот. К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов - цитозин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК). Тимин химически очень близок к урацилу (он представляет собой 5-метилурацил, т. е. урацил, в котором у 5-го углеродного атома стоит метильная группа). В молекуле пуринов имеется два кольца, а в молекуле пиримидинов - одно.

Основания принято обозначать первой буквой их названия: А, Г, Т, У и Ц.


Нуклеиновые кислоты являются кислотами потому, что в их молекуле содержится фосфорная кислота.

На рисунке показано, как сахар, основание и фосфорная кислота, объединяясь, образуют молекулу нуклеотида . Соединение сахара с основанием происходит с выделением молекулы воды, т. е. представляет собой реакцию конденсации. Для образования нуклеотида требуется еще одна реакция конденсации - между сахаром и фосфорной кислотой.

Разные нуклеотиды отличаются друг от друга природой Сахаров и оснований, которые входят в их состав.

Роль нуклеотидов в организме не ограничичается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют собой нуклеотиды. Таковы, например, аденозинтрифосфат (АТФ), циклический аденозинмонофосфат (цАМФ), кофермент А, никотинамидаденинди-нуклеотид (НАД), никотинамидадениндинуклеотидфосфат (НАДФ) и флавинадениндинуклеотид (ФАД).

Нуклеиновые кислоты - это природные высокомолекулярные соединения (полинуклеотиды), которые играют огромную роль в хранении и передаче наследственной информации в живых организмах.

Молекулярная масса нуклеиновых кислот может меняться от сотен тысяч до десятков миллиардов. Они были открыты и выделены из клеточных ядер еще в XIX в., однако их биологическая роль была выяснена только во второй половине XX в.

В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части:

1) азотистое основание - пиримидиновое или пуриновое

Пиримидиновые основания – производные пиримидина, входящие в состав нуклеиновых кислот: урацил, тимин, цитозин .

Для оснований, содержащих группу –ОН, характерно подвижное равновесие структурных изомеров, обусловленное переносом протона от кислорода к азоту и наоборот:

Пуриновые основания - производные пурина, входящие в состав нуклеиновых кислот: аденин, гуанин .

Гуанин существует в виде двух структурных изомеров:

2) моносахарид

Рибоза и 2-дезоксирибоза относятся к моносахаридам, содержащим пять углеродных атомов. В состав нуклеиновых кислот они входят в циклических β-формах:

3) остаток фосфорной кислоты

ДНК и РНК

В зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или 2-дезоксирибоза , различают

· рибонуклеиновые кислоты (РНК) и

· дезоксирибонуклеиновые кислоты (ДНК)

В главную (сахарофосфатную) цепь РНК входят остатки рибозы , а в ДНК – 2-дезоксирибозы .
Нуклеотидные звенья макромолекул ДНК могут содержать аденин, гуанин, цитозин и тимин . Состав РНК отличается тем, что вместо тимина присутствует урацил .

Молекулярная масса ДНК достигает десятков миллионов а.е.м. Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и протоплазме клеток.

При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру.

· Первичная структура нуклеиновых кислот – это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.

Например:

В сокращённом однобуквенном обозначении эта структура записывается как

...– А – Г – Ц –...

· Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей.

Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.

Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.

Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение).

Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием.

Пиримидиновое основание комплементарно пуриновому основанию:

Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,

· ТИМИН (Т) комплементарен АДЕНИНУ (А),

· ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.

Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.

Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:

· молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным, поскольку последовательность оснований в одной из цепей двойной спирали контролирует их расположение в другой цепи.

· молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида.

Вторичная структура РНК

В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).

Основная роль РНК – непосредственное участие в биосинтезе белка.

Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул:

· информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка;

· транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа "узнают" по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка;

· рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК.

Доклад

Студенток 1 курса 13 группы Института фзической культуры и спорта

Факультета физической культуры для лиц с отклонениями в состоянии здоровья (адаптивная физическая культура)

Размус Алены

Семеновой Екатерины

по теме: «Нуклеиновые кисллоты».

    Нуклеиновые кислоты. Определение. Открытие. Виды нуклеиновых кислот.

    Нуклеотид. Состав. Строение.

    Правило Чааргафа

    ДНК. Модель Уотсона и Крика. Структура. Состав. Функции.

    РНК. Состав и ее разнообразие.

    ДНК – носитель наследственной информации.

    Краткие итоги.

Нуклеиновые кислоты.

Нуклеиновые кислоты (Нк)биополимеры, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Впервые Нк были описаны в 1868 году швейцарским биохимиком Фридрихом Мишером (1844-1895) .

Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входили N 2 и P. Ученый назвал это вещество нуклеином (лат. nucleus – ядро), полагая, что оно содержится лишь в ядрах клеток. Позднее небелковая часть этого вещства была названа нуклеиновой кислотой .

Нуклеиновые кислоты в природе существут двух типов, различающиеся по составу, строению и функциям. Одна названа ДНК (дизоксирибонуклиновая кислота), а вторая РНК (рибонуклиновая кислота).

Нуклеиновые кислоты – это важнейшие биополимеры, определяющие основные свойства живого.

Нуклеотиды. Состав. Строение.

ДНК – это полимерная молекула, состоящая из десятков тысяч или миллионов мономеров – дезоксирибонуклеотидов .

Определение размеров молекул ДНК стало возможным только после разработки специальных методов: электронной микроскопии, ультрацентрифугирования, электрофореза. При полном гидролизе эти молекулы расщепляются до пуриновых и пеиримидиновых оснований, пятиугольного моносахарида дезоксирибозы и фосфорной кислоты.

Пуриновые основания – производные пурин. Из них в сосатв нуклеиновых кислот входят аденин и гуанин :

Пиримидиновые основания , содержащиеся в нуклеиновых кислотах, - цитозин и тимин в ДНК, цитозин и урацил в РНК – это производные пиримидина:

Тимин отличается от урацила наличием метильной группы (-СН 3). Пуриновые и пиримидиновые основания называются азотистыми основаниями .

При мягком гидролизе нуклеиновых кислот получали соединения, дезоксирибоза которых была связана с пуриновым или пиримидиновым основанием посредством атома N 2 . Подобные соединения получили название нуклеозидов . Нуклеозиды,соединяясь с одной молекулой фосфорной кислоты, образуют более сложные вещества – нуклеотиды . Именно они являются мономерами нуклеиновых кислот ДНК и РНК.

Итак, нуклеотид состояит из остатков азотистого основания, сахара – пентозы и фофорной кислоты.

Правило Эрвина Чааргафа.

Нуклеотидный состав ДНК впервые количественно проанализировал американский биохимик Эрвин Чааргаф , который в 1951 году доказал, что в составе ДНК имеются четыре основания. Э. Чааргаф обнаружил, что у всех изученных им видов количество пуринового основания аденина (А) равно количеству пиримидинового основания тимина (Т) , т.е. А=Т .

Сходным образом количество пуринового основания гуанина (Г) всегда равно количеству пиримидинового основания цитозина (Ц) , т.е. Г=Ц . Таким образом, число пуриновых ДНК всегда равно числу пиримидиновых , т.е. количеству аденина равно количеству имина, а количество гуанина – количеству цитозина. Эта закономерность получило название правила Чааргафа .

Днк. Модель Уотсона и Крика. Структура. Состав. Функции.

В 1950 году английский физик Морис Хью Уилкинс получил рентгенограмму ДНК. Она показала, что молекула ДНК имеет определенную вторичную структуру, расшифровка которой помогла бы понять механизм функционирования ДНК. Рентегонграммы, полученные на высокоочищенной ДНК, позволили Розалинде Франклин , коллеге Уилкинса, увидеть четкий крестообразный рисунок – опознавательный знак двоной спирали. Стало извесно также, что нуклеотиды расположены друг от лруга на растоянии 0, 34 нм, а на один виток спирали их приходится 10. Диаметр молекулы ДНК составляет около 2 нм. Из рентгеноструктурных данных, однако, было неясно, каким образом цепи удерживаются вместе в молекулах ДНК.

Картна полностью прояснилась в 1953 году, когда американский биохимик Джеймс Уотсон и английский физик Фрэнсис Крик, рассмотрев совокупность известных данных о строении ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания – в середине. Причем последние ориентированы таким образом, что между основаниями противоположных цепей могут образовываться водородные связи. Из построенной ими модели выявилось, что пурин в одной цепи всегда связан водородными связями с противолежащим пиримидином в другой цепи.

Такие пары имеют одинаковый размер по всей длинне молекулы. Не менее важно то,что аденин может спариваться лишь с тимином, а гуанин только с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином и цитозином – три.

В каждой из цепей ДНК основания могут чередоваться всеми возможными способами. Если известна последовательность оснований в одной цепи (например, Т – Ц – Г – Ц – А – Т ), то благодаря специфичности спаривания (принцип дополнения, т.е. комплементарности ) становится извсетной и последовательность оснований ее партнера – второй цепи (А – Г – Ц – Г – Т – А ). Противолежащие последовательности и соответствующие полинуклеотидные цепи называют комплементарными . Хотя водородные связи, стабилизирующие пары оснований, относительно слабы, каждая молекула ДНК содержит так много пар, что в физиологических условиях (темпиратура, pH) комплименарные цепи никогда самостоятельно не разделяются.

В начале 50-х годов большая группа ученых под руководством английского ученого А. Тодда установила точную структуру связей, соединяющих нуклеотиды одной цепи. Все эти связи оказались одинаковыми: углеродный атом в 5"-положении остатка дезоксирибозы (цифры со штрихами обозначают углеродные атомы в пятичленном сахаре – рибозе или дизоксирибозе) одного нуклеотида соединяется через фосфатную группу с углеродным атомом в 3’-положени соседнего нуклеотида. Никаких признаков необычных связей обнаружено не было. А. Тодд с сотрудниками пришли к выводу, что полинуклеотидные цепи ДНК, так же как и полипиптидные цепи белка, строго линейные. Регулярно расположенные связи между сахарами и фосфатными группами образуют скелет полинуклеотидной цепи.

Напротив 5"-конца одной цеп находится 3’-конец комплементарной цепи. Такая ориентация цепей названа антипараллельной .

У всех живущих на Земле организмов ДНК представлена двухцепоными спиральными молекулами. Исключение составляют одноцепочные молекулы ДНК некоторых фагов – вирусов, поражающих бактериальные клетки. Эти одноцепочные ДНК всегда кольцевые. Двухцепочные ДНК бывают и кольцевые и линейные. Бактерии содержат только кольцевые формы ДНК. У растений, грибов и животных имеются и линейные (в ядре клетки), и кольцевые (в хлоропластахи митохондриях) молекулы.

Функции ДНК:

    Хранение информации

    Передача и воспроизведение в ряду поколений генетической информации

    ДНК определяет, какие белки и в каких количествах необходимо синтезировать

Каждый вид имеет свой специфический нуклеотидный состав ДНК. 


    Ларсон и соавторы в аналитических опытах на микроколонке (0,15 X 10 см) исследовали оптимальные условия для фракционирования рестриктов ДНК в системе ХОФ-5 при среднем давлении (33 атм) и скорости элюции 13 мл/ч. Наилучшее разделение 17 фрагментов размерами от 43 до 850 пар оснований получалось у них при использовании очень пологого линейного градиента (0,55-0,75 М K I) объемом 40 мл (220 Fj) в нейтральном буфере при температуре 43°. Повышение температуры , по их данным, затрудняет элюцию ДНК и растягивает ее профиль. Удается разделить фрагменты длиной 98 и 102 пары оснований , чего далеко не всегда можно добиться с помощью электрофореза. Длина липких концов рестриктов и их состав влияют на разделение, равно как и нуклеотидный состав ДНК и даже последовательность оснований . Подчеркивается нео - 

В связи с тем что на протяжении последнего десятилетия появились в литературе предложения использовать для классификации бактерий соотношение нуклеотидов в составе ДНК отдельных видов микробов , следует кратко остановиться на этом вопросе. Нуклеотидный состав ДНК в значительной степени зависит от систематического положения организма. В лаборатории Чаргаффа установлена видовая специфичность 

Промывку повторяют через 5 минут тем же объемом фосфатного буфера . Такими двумя промывками удаляется 90% ДНК, которая может быть элюирована при заданной температуре. Затем цикл повтор-яют при более высокой температуре . В полученных фракциях может быть определен нуклеотидный состав. 

Нуклеотидный состав является одной из важнейших характеристик НК, которая может дать представление о природе, свойствах, генезисе и функциях РНК и ДНК. 

Нуклеотидный состав РНК обычно определяют после щелочного гидролиза препарата, дающего смесь свободных рибонуклеотидов. О нуклеотидном составе ДНК судят по соотношению азотистых оснований , образующихся при глубоком кислотном гидролизе препарата. 


    Кроме того, нуклеотидный состав ДНК может быть определен по Делю . Очищенную ДНК растворяют в 0,1 н. СНзСООН (25-50 т/мл). Измеряют оптическую плотность раствора при 260 и 280 ммк против 0,1 и. СНзСООН и содержание ГЦ-пар в молекуле ДНК рассчитывают по эмпирической формуле 

ДНК разных видов имеет различный нуклеотидный состав 

Сразу же после появления в 1953 г. гипотезы Уотсона и Крика было высказано предположение, что рибосомная РНК (рРНК), на долю которой в некоторых клетках приходится до 90% общего количества РНК, является переносчиком генетической информации из ядер в цитоплазму. Однако к 1960 г. было показано, что это предположение цеправильно. Так, в частности, несмотря на значительные различия нуклеотидного состава ДНК, размер и нуклеотидный состав РНК в рибосомах различных бактерий оказались весьма близкими (гл. 2, разд. Г, 8) . Кроме того, к этому времени стало ясно, что перенос информации осуществляется при помощи относительно нестабильной, короткоживущей формы РНК, тогда как рибосомная РНК оказалась очень стабильной . 

Диапазон изменений нуклеотидного состава ДНК на удивление широк. Суммарное процентное содержание цитозина и гуанина (G -содержа-ние) в различных бактериях меняется от 22 до 74%. (G -содержание в ДНК Е. oli равно 51,7%). Для эукариот этот диапазон более узок (от 28 до 58%). Тот факт, что у бактериальных ДНК нуклеотидный состав меняется в гораздо более широких пределах, чем у высших организмов, удивления не вызывает. Прокариоты существуют на Земле почти столько же миллионов лет, сколько и мы. Но из-за их более простой структуры и высокой скорости деления природа совершила над их генетическим материалом значительно больше экспериментов и внесла в него значительно больше изменений, чем в наш. 

Важный шаг на пути создания естественной систематики прокариот связан с успехами молекулярной биологии . В 60-х гг. XX в. было установлено, что все свойства организма определяются уникальными химическими молекулами - ДНК, поэтому бактерии могут быть классифицированы путем сравнения их геномов. По такому признаку, как генетический материал , оказалось возможным на основании выявления степени сходства делать вывод о степени родства между организмами. Первоначально для таксономических целей сравнивали молярное содержание суммы гуанина и цитозина (ГЦ) в процентах от общего количества оснований ДНК у разных объектов. Этот показатель у прокариот колеблется от 25 до 75 % . Однако ГЦ-показатель дает возможность только для фубого сравнения геномов. Если организмы имеют одинаковый нуклеотидный состав ДНК, возможно и сходство и различие между ними, поскольку генетическое кодирование основано не только на определенном содержании оснований в единице кодирования (триплете), но и на их взаимном расположении. 

На примере 1-5 установлено, что нуклеотидный состав влияет на интенсивность флуоресценции интеркалирующего красителя этидийбромида . Так, при равных величинах оптической плотности растворов бедные 1 уанином олигонуклеотиды окрашиваются этидийбромидом намного хуже. По-видимому, наличие гуанина влияет на интеркалирующую способность красителя. Все синтезированные олигонуклеотиды использовались для амплификации соответствующих участков ДНК-матриц. 

Независимо Э. Волкин и Ф. Астрачан (1956) изучали синтез РНК в бактериях, зараженных ДНК-содержащим бактериофагом Т2. После заражения бактерии перестают синтезировать свои белки, и весь белковый синтез клетки переключается на продукцию белков фага . Оказалось, что основная часть РНК клетки-хозяина при этом/не изменяется, но в клетке начинается продукция небольшой фр ции метаболически нестабильной (короткоживущей) РНК, нуклеотидный состав которой подобен составу ДНК фага. 

В девятом издании Определителя бактерий Берги все обнаруженные организмы, отнесенные в царство Prokaryotae, разделены на 33 группы. Признаки, по которым осуществляется разделение на группы, как правило, относятся к категории легко определяемых и вынесены в названия групп , например грамотрицательные аэробные палочки и кокки (группа 4), анаэробные грамотрицательные кокки (группа 8), грамположительные палочки и кокки, образующие эндоспоры (группа 13), скользящие бактерии , образующие плодовые тела (группа 24). Основная идея классификации по Берги - легкость идентификации бактерий. Для осуществления этого используют совокупность признаков морфологических (форма тела наличие или отсутствие жгутиков капсулы способность к спорообразованию особенности внутриклеточного строения окрашивание по Граму), культуральных (признаки, выявляемые при культивировании в лаборатории чистой культуры), физиолого-биохимических (способы получения энергии потребности в питательных веществах отношение к факторам внешней среды нуклеотидный состав и последовательность нуклеотидов в молекуле ДНК наличие и характер минорных оснований в ДНК нуклеотидный состав рибосомальной РНК последовательность аминокислот в ферментных белках с аналогичными функциями). 

Было выяснено, что нуклеотидный состав ДНК настолько типичен для каждого вида бактерий , что при изменчивости бактерий по типу расщепления на 5- и Н-варианты, они имеют идентичный состав ДНК. Установлено также, что бактерии, относящиеся к разным систематическим группам , имеют сходный нуклеотидный состав ДНК (кишечная палочка и некоторые коринебактерии 50-52% ГЦ псевдомонасы и микобактерии 57- 70% ГЦ). Культуры бактерий с одинаковым составом ДНК не обязательно родственны. Существует известная корреляционная связь между нуклеотидным составом и антигенной структурой . Пока не удалось установить связи между составом ДНК и принадлежностью бактерий к грамположительной группе. Близкородственные бактерии патогенного и сапрофитного видов, гемолитические и негемолитические оказались показателями специфичности ДНК. 

Преобладающая часть молекулы ДНК представлена цистро-нами м-РНК. Этим объясняется то обстоятельство, что суммарный нуклеотидный состав м-РНК ткани обычно близок к нуклеотидному составу тотальной ДНК. 

    Щелочной гидролиз РНК. Нуклеотидный состав РНК можно определять без предварительного извлечения НК из растений и после их извлечения. Если определение нуклеотидного состава ведется без извлечения НК из



Загрузка...