Кошки. Породы, стерилизация

Что такое совершенное число. Совершенные числа, компанейские числа - удивительные числа

Собственный делитель натурального числа - это любой делитель, кроме самого этого числа. Если число равно сумме своих собственных делителей, то оно называется совершенным . Так, 6 = 3 + 2 + 1 - это наименьшее из всех совершенных чисел (1 не в счет), 28 = 14 + 7 + 4 + 2 + 1 - это еще одно такое число.

Совершенные числа были известны еще в древности и интересовали ученых во все времена. В «Началах» Евклида доказано, что если простое число имеет вид 2 n – 1 (такие числа называют простыми числами Мерсенна), то число 2 n –1 (2 n – 1) - совершенное. А в XVIII веке Леонард Эйлер доказал, что любое четное совершенное число имеет такой вид.

Задача

Попробуйте доказать эти факты и найти еще пару-тройку совершенных чисел.


Подсказка 1

а) Чтобы доказать утверждение из «Начал» (что если простое число имеет вид 2 n – 1, то число 2 n –1 (2 n – 1) - совершенное), удобно рассмотреть сигма-функцию, которая равна сумме всех положительных делителей натурального числа n . Например, σ (3) = 1 + 3 = 4, а σ (4) = 1 + 2 + 4 = 7. Эта функция обладает полезным свойством: она мультипликативна , то есть σ (ab ) = σ (a )σ (b ); равенство выполняется для любых двух взаимно простых натуральных чисел a и b (взаимно простыми называются числа, у которых нет общих делителей). Это свойство можно попытаться доказать или принять на веру.

При помощи сигма-функции доказательство совершенности числа N = 2 n –1 (2 n – 1) сводится к проверке того, что σ (N ) = 2N . Для этого пригодится мультипликативность этой функции.

б) Другой путь решения не использует никаких дополнительных конструкций вроде сигма-функции. Он опирается только на определение совершенного числа: нужно выписать все делители числа 2 n –1 (2 n – 1) и найти их сумму. Должно получиться это же число.

Подсказка 2

Доказывать, что любое четное совершенное число - это степень двойки, умноженная на простое число Мерсенна, также удобно с помощью сигма-функции. Пусть N - какое-нибудь четное совершенное число. Тогда σ (N ) = 2N . Представим N в виде N = 2 k ·m , где m - нечетное число. Поэтому σ (N ) = σ (2 k ·m ) = σ (2 k )σ (m ) = (1 + 2 + ... + 2 k )σ (m ) = (2 k +1 – 1)σ (m ).

Получается, что 2·2 k ·m = (2 k +1 – 1)σ (m ). Значит, 2 k +1 – 1 делит произведение 2 k +1 ·m , а поскольку 2 k +1 – 1 и 2 k +1 взаимно просты, то m должно делиться на 2 k +1 – 1. То есть m можно записать в виде m = (2 k +1 – 1)·M . Подставив это выражение в предыдущее равенство и сократив на 2 k +1 – 1, получим 2 k +1 ·M = σ (m ). Теперь до окончания доказательства остается всего один, хотя и не самый очевидный, шаг.

Решение

В подсказках содержится значительная часть доказательств обоих фактов. Восполним здесь недостающие шаги.

1. Теорема Евклида.

а) Для начала нужно доказать, что сигма-функция действительно мультипликативна. На самом деле, поскольку каждое натуральное число однозначно раскладывается на простые множители (это утверждение называют основной теоремой арифметики), достаточно доказать, что σ (pq ) = σ (p )σ (q ), где p и q - различные простые числа. Но довольно очевидно, что в этом случае σ (p ) = 1 + p , σ (q ) = 1 + q , а σ (pq ) = 1 + p + q + pq = (1 + p )(1 + q ).

Теперь завершим доказательство первого факта: если простое число имеет вид 2 n – 1, то число N = 2 n –1 (2 n – 1) - совершенное. Для этого достаточно проверить, что σ (N ) = 2N (так как сигма-функция - это сумма всех делителей числа, то есть сумма собственных делителей плюс само число). Проверяем: σ (N ) = σ (2 n –1 (2 n – 1)) = σ (2 n –1)σ (2 n – 1) = (1 + 2 + ... + 2 n –1)·((2 n – 1) + 1) = (2 n – 1)·2 n = 2N . Здесь было использовано, что раз 2 n – 1 - простое число, то σ (2 n – 1) = (2 n – 1) + 1 = 2 n .

б) Доведем до конца и второе решение. Найдем все собственные делители числа 2 n –1 (2 n – 1). Это 1; степени двойки 2, 2 2 , ..., 2 n –1 ; простое число p = 2 n – 1; а также делители вида 2 m ·p , где 1 ≤ m n – 2. Суммирование всех делителей тем самым разбивается на подсчет сумм двух геометрических прогрессий . Первая начинается с 1, а вторая - с числа p ; у обеих знаменатель равен 2. По формуле суммы элементов геометрической прогрессии сумма всех элементов первой прогрессии равна 1 + 2 + ... + 2 n –1 = (2 n – 1)/2 – 1 = 2 n – 1 (и это равно p ). Вторая прогрессия дает p ·(2 n –1 – 1)/(2 – 1) = p ·(2 n –1 – 1). Итого, получается p + p ·(2 n –1 – 1) = 2 n –1 ·p - то, что надо.

Скорее всего, Евклид не был знаком с сигма-функцией (да и вообще с понятием функции), поэтому его доказательство изложено несколько другим языком и ближе к решению из пункта б). Оно содержится в предложении 36 из IX книги «Начал» и доступно, например, .

2. Теорема Эйлера.

Прежде чем доказывать теорему Эйлера, отметим еще, что если 2 n – 1 - простое число Мерсенна , то n также должно быть простым числом. Дело в том, что если n = km - составное, то 2 km – 1 = (2 k ) m – 1 делится на 2 k – 1 (поскольку выражение x m – 1 делится на x – 1, это одна из формул сокращенного умножения). А это противоречит простоте числа 2 n – 1. Обратное утверждение - «если n - простое, то 2 n – 1 также простое» - не верно: 2 11 – 1 = 23·89.

Вернемся к теореме Эйлера. Наша цель - доказать, что любое четное совершенное число имеет вид, полученный еще Евклидом. В подсказке 2 были намечены первые этапы доказательства, и осталось сделать решающий шаг. Из равенства 2 k +1 ·M = σ (m ) следует, что m делится на M . Но m делится также и на само себя. При этом M + m = M + (2 k +1 – 1)·M = 2 k +1 ·M = σ (m ). Это означает, что у числа m нет других делителей, кроме M и m . Значит, M = 1, а m - простое число, которое имеет вид 2 k +1 – 1. Тогда N = 2 k ·m = 2 k (2 k +1 – 1), что и требовалось.

Итак, формулы доказаны. Применим их, чтобы найти какие-нибудь совершенные числа. При n = 2 формула дает 6, а при n = 3 получается 28; это первые два совершенных числа. По свойству простых чисел Мерсенна, нам нужно подобрать такое простое n , что 2 n – 1 будет также простым числом, а составные n можно вообще не рассматривать. При n = 5 получится 2 n – 1 = 32 – 1 = 31, это нам подходит. Вот и третье совершенное число - 16·31 = 496. На всякий случай проверим его совершенность явно. Выпишем все собственные делители 496: 1, 2, 4, 8, 16, 31, 62, 124, 248. Их сумма равна 496, так что всё в порядке. Следующее совершенное число получается при n = 7, это 8128. Соответствующее простое число Мерсенна равно 2 7 – 1 = 127, и довольно легко проверить, что оно действительно простое. А вот пятое совершенное число получается при n = 13 и равно 33 550 336. Но проверять его вручную уже очень утомительно (однако это не помешало кому-то открыть его еще в XV веке!).

Послесловие

Первые два совершенных числа - 6 и 28 - были известны с незапамятных времен. Евклид (и мы вслед за ним), применив доказанную нами формулу из «Начал», нашел третье и четвертое совершенные числа - 496 и 8128. То есть сначала было известно всего два, а потом четыре числа с красивым свойством «быть равными сумме своих делителей». Больше таких чисел обнаружить не могли, да и эти, на первый взгляд, ничего не объединяло. В эпоху древности люди были склонны вкладывать мистический смысл в таинственные и непонятные явления, поэтому и совершенные числа получили особый статус. Пифагорейцы , оказавшие сильное влияние на развитие науки и культуры того времени, также поспособствовали этому. «Всё есть число», - говорили они; число 6 в их учении обладало особыми магическими свойствами. А ранние толкователи Библии объясняли, что мир был сотворен именно на шестой день, потому что число 6 - самое совершенное среди чисел, ибо оно первое среди них. Также многим казалось неслучайным, что Луна делает оборот вокруг Земли примерно за 28 дней.

Пятое совершенное число - 33 550 336 - было найдено только в XV веке. Еще почти через полтора века итальянец Катальди нашел шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Им соответствуют n = 17 и n = 19 в формуле Евклида. Обратите внимание, что счет идет уже на миллиарды, и страшно даже представить, что все вычисления были проделаны без калькуляторов и компьютеров!

Как мы знаем, Леонард Эйлер доказал, что любое четное совершенное число должно иметь вид 2 n –1 (2 n – 1), причем 2 n – 1 должно быть простым. Восьмое число - 2 305 843 008 139 952 128 - нашел тоже Эйлер в 1772 году. Здесь n = 31. После его достижений можно было осторожно сказать, что про четные совершенные числа науке стало что-то понятно. Да, они быстро растут, и их трудно вычислять, но хотя бы ясно, как это делать: надо брать числа Мерсенна 2 n – 1 и искать среди них простые. Про нечетные совершенные числа неизвестно почти ничего. На сегодняшний день не найдено ни одного такого числа, при том что проверены все числа до 10 300 (видимо, нижняя граница отодвинута даже дальше, просто соответствующие результаты еще не опубликованы). Для сравнения: число атомов в видимой части Вселенной оценивается величиной порядка 10 80 . При этом не доказано, что нечетных совершенных чисел не существует, просто это может быть очень большое число. Даже настолько большое, что наши вычислительные мощности никогда до него не доберутся. Существует ли такое число или нет - одна из открытых на сегодня проблем математики. Компьютерным поиском нечетных совершенных чисел занимаются участники проекта OddPerfect.org .

Вернемся к четным совершенным числам. Девятое число было найдено в 1883 году сельским священником из Пермcкой губернии И. М. Первушиным . В этом числе 37 цифр. Таким образом, к началу XX века было найдено всего 9 совершенных чисел. В это время появились механические арифметические машины, а в середине века - и первые компьютеры. С их помощью дело пошло быстрее. Сейчас найдено 47 совершенных чисел. Причем только у первых сорока известны порядковые номера. Еще про семь чисел пока точно не установлено, какие они по счету. В основном поиском новых мерсенновских простых (а с ними - и новых совершенных чисел) занимаются участники проекта GIMPS (mersenne.org).

В 2008 году участниками проекта было найдено первое простое число, в котором больше 10 000 000 = 10 7 цифр. За это они получили приз $100 000. Денежные призы 150 000 и 250 000 долларов также обещаны за простые числа, состоящие из больше чем 10 8 и 10 9 цифр соответственно. Предполагается, что из этих денег получат вознаграждение и те, кто нашел меньшие, но еще не открытые простые числа Мерсенна. Правда, на современных компьютерах проверка чисел такой длины на простоту займет годы, и это, наверное, дело будущего. Самое большое простое число на сегодня равно 2 43112609 – 1. Оно состоит из 12 978 189 цифр. Отметим, что благодаря тесту Люка-Лемера (см. его доказательство: A proof of the Lucas–Lehmer Test) сильно упрощается проверка на простоту чисел Мерсенна: не нужно пытаться найти хотя бы один делитель очередного кандидата (это очень трудоемкая работа, которая для таких больших чисел практически невыполнима сейчас).

У совершенных чисел есть забавные арифметические свойства:

  • Каждое четное совершенное число является также треугольным числом , то есть представимо в виде 1 + 2 + ... + k = k (k + 1)/2 для некоторого k .
  • Каждое четное совершенное число, кроме 6, является суммой кубов последовательных нечетных натуральных чисел. Например, 28 = 1 3 + 3 3 , а 496 = 1 3 + 3 3 + 5 3 + 7 3 .
  • В двоичной системе счисления совершенное число 2 n –1 (2 n – 1) записывается очень просто: сначала идут n единиц, а потом - n – 1 нулей (это следует из формулы Евклида). Например, 6 10 = 110 2 , 28 10 = 11100 2 , 33550336 10 = 1111111111111000000000000 2 .
  • Сумма чисел, обратных всем делителям совершенного числа (само число здесь тоже участвует), равна 2. Например, 1/1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2.

§ 4. Совершенные числа

Нумерология (или гематрия, как ее иногда еще называют) была распространенным увлечением у древних греков. Естественным объяснением этому является то, что числа в Древней Греции изображались буквами греческого алфавита, и поэтому каждому написанному слову, каждому имени соответствовало некоторое число. Люди могли сравнивать свойства чисел, соответствующих их именам.

Делители или аликвотные части чисел играли важную роль в нумерологии. В этом смысле идеальными, или, как их называют, совершенными числами являлись такие числа, которые составлялись из своих аликвотиых частей, т. е. равнялись сумме своих делителей. Здесь следует отметить, что древние греки не включали само число в состав его делителей.

Наименьшим совершенным числом является 6:

За ним следует число 28:

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

Часто математик, увлеченный решением какой-либо проблемы и имеющий одно или несколько частных решений этой задачи, пытается найти закономерности, которые смогли бы дать ключ к нахождению общего решения. Указанные нами совершенные числа могут быть записаны в виде

6 = 2 3 = 2(2 2 - 1),

28 = 2 2 7 = 2 2 (2 3 - 1),

496 = 24 31 = 2 4 (2 5 - 1).

Это наталкивает нас на гипотезу:

Число является совершенным, если оно представляется в виде

Р = 2 p -1 (2 p - 1) = 2 р q , (3.4.1)

q = 2 p - 1

является простым числом Мерсенна.

Этот результат, известный еще грекам, несложно доказать. Делителями числа Р , включая само число Р , очевидно, являются следующие числа:

1, 2, 2 2 …, 2 р-1 ,

q , 2q , 2 2 q …, 2 р-1 q .

Запишем сумму этих делителей

1 + 2 +… + 2 р -1 + q (1 + 2 +… + 2 р -1),

которая равна

(1 + 2 +… + 2 р -1)(q + 1) = (1 + 2 +… + 2 р -1) 2 р

Если вы не помните формулы для суммы членов геометрической прогрессии,

S = 1 + 2 +… + 2 р -1 ,

то умножьте эту сумму на 2:

2S = 2 + 2 2 +… +2 р -1 + 2 р ,

а затем, вычтя S , получите

S = 2 p - 1 = q .

Таким образом, сумма всех делителей числа Р есть

2 p q = 2 2 p -1 q,

а сумма всех делителей, кроме самого числа Р = 2 p -1 q , равна

2 2 p -1 q - 2 p -1 q = 2 p -1 q = Р.

Итак, наше число является совершенным.

Из этого результата следует, что каждое простое число Мерсенна порождает совершенное число. В § 2 второй главы говорилось, что известно всего 23 простых числа Мерсенна, следовательно, мы знаем также и 23 совершенных числа. Существуют ли другие виды совершенных чисел? Все совершенные числа вида (3.4.1) являются четными, можно доказать, что любое четное совершенное число имеет вид (3.4.1). Остается вопрос: существуют ли нечетные совершенные числа? В настоящее время мы не знаем ни одного такого числа, и вопрос о существовании нечетных совершенных чисел является одной из самых знаменитых проблем теории чисел. Если бы удалось обнаружить такое число, то это было бы крупным достижением. Вы можете поддаться соблазну найти такое число, перебирая различные нечетные числа. Но мы не советуем этого делать, так как по последним сообщениям Брайена Такхермана из IBM (1968), нечетное совершенное число должно иметь по крайней мере 36 знаков.

Система задач 3.4.

1. Используя список простых чисел Мерсенна, найдите четвертое и пятое совершенные числа.

Из книги Искатели необычайных автографов автора Левшин Владимир Артурович

ЧИСЛА, ЧИСЛА, ЧИСЛА… - Есть такая книга, - начал Мате, - «Диалоги о математике». Написал ее выдающийся венгерский математик нашего века Альфред Реньи. Форма диалога выбрана им не случайно, как не случайно, вероятно, обратился к ней когда-то Галилео Галилей.Жанр диалога

Из книги Приглашение в теорию чисел автора Оре Ойстин

§ 4. Фигурные числа В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как32 = 9, 72 = 49, 102 = 100,и аналогично с кубами, т. е. такими числами, как23 = 8, 33 = 27, 53 = 125. Рис. 2.Этот геометрический образ рассматриваемой операции с числами является частью богатого

Из книги Научные фокусы и загадки автора Перельман Яков Исидорович

ГЛАВА 2 ПРОСТЫЕ ЧИСЛА § 1. Простые и составные числа Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,6 = 2 3, 9 = 3 3, 30 = 2 15 = 3 10,в то время как другие, например,3, 7, 13, 37,не

Из книги Апология математики, или О математике как части духовной культуры автора Успенский Владимир Андреевич

§ 2. Простые числа Мерсенна В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы выбрать несколько очень больших чисел, не имеющих таких

Из книги Математика любви. Закономерности, доказательства и поиск идеального решения автора Фрай Ханна

§ 3. Простые числа Ферма Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами

Из книги Тайная жизнь чисел [Любопытные разделы математики] автора Наварро Хоакин

§ 5. Дружественные числа Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму

Из книги Том 9. Загадка Ферма. Трехвековой вызов математике автора Виолант-и-Хольц Альберт

§ 2. Взаимно простые числа Число 1 является общим делителем для любой пары чисел а и b. Может случиться, что единица будет единственным их общим делителем, т. е.d0 = D(a, b) = 1. (4.2.1)В этом случае мы говорим, что числа а и b взаимно простые.Пример. (39, 22) = 1.Если числа имеют общий

Из книги автора

§ 1. Числа «Все есть число» - учили древние пифагорейцы. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда

Из книги автора

44. Какие числа? Какие два целых числа, если их перемножить, составят семь?Не забудьте, что оба числа должны быть целые, поэтому такие ответы, как З1/2 ? 2 или 21/3 ? 3, не

Из книги автора

47. Три числа Какие три целых числа, если их перемножить, дают столько же, сколько получается от их Из книги автора

Магические числа Как и во многих ранее проведенных опросах, выяснилось, что среднее число сексуальных партнеров в течение жизни респондентов относительно невелико: примерно семь для гетеросексуальных женщин и примерно тринадцать для гетеросексуальных мужчин.

Из книги автора

Глава 1 Числа Альберт! Перестань указывать Богу, что Ему делать! Нильс Бор - Альберту Эйнштейну Вначале были число и фигура. Когда человек попытался овладеть ими, родилась наука, и человек начал познавать окружающий мир. Развитие науки часто сопровождалось забавными,

Из книги автора

Приложение Фигурные числа Фигурное число - это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства,

Каратецкая Мария

В данной реферативной работе с элементами самостоятельного исследования "открывается" понятие совершенного числа,

исследуются свойства совершенных чисел,история их появления,приводятся интересные факты,связанные с понятием.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Средняя школа №19с углубленным изучением

Отдельных предметов»

Научное общество учащихся «Умники и умницы»

Реферативная работа с элементами

самостоятельного исследования

«Совершенные числа»

Выполнила:

Ученица 7класса «А»

Каратецкая Мария

Руководитель:

учитель математики

Колина Наталья Константиновна

Адрес ОУ:

606523, Нижегородская область, Городецкий

Район, г.Заволжье, ул.Молодежная, 1

МБОУ СШ №19 с УИОП

E-mail: [email protected]

2015 г.

1.Введение……………………………………………………………………………3

2.Что такое совершенное число?……...........................…………............................4

3.История появления совершенных чисел………………………………………....4

4.Свойства совершенных чисел…………………………….……………………....8

5.Интересные факты…………………………………..……………….....................8

6.Примеры задач…………………………………………………………………….9

7.Заключение…………………………………………………………………..........11

8.Список используемой литературы………………………….…………...............12

"Всё прекрасно благодаря числу» Пифагор.

1.Введение

Число является одним из основных понятий математики. Существует большое количество определений понятию "число". О числах первым начал рассуждать Пифагор. По его учению число 2 означало гармонию, 5 – цвет, 6 –холод, 7–разум, здоровье, 8 –любовь и дружбу. Первое научное определение числа дал Евклид в труде "Начала": "Единица есть то, в соответствии, с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц".

Есть множества чисел, их подмножества, группы, и одна из необычных групп - это совершенные числа. В этой группе известно всего лишь 48 чисел, но не смотря на это, они образуют одно из наиболее интересных подмножеств множества натуральных чисел.

Проблема: Я люблю решать нестандартные задачки. Однажды мне попалась задача, в которой говорилось о совершенных числах, я испытала трудности при решении, поэтому заинтересовалась этой темой и решила подробнее изучить эти числа.

Цель исследования: познакомиться с понятием совершенного числа, исследовать свойства совершенных чисел, привлечь внимание учащихся к данной теме.

Задачи:

Изучить и проанализировать литературу по теме исследования.

Изучить историю появления совершенных чисел.

-«Открыть» свойства совершенных чисел и области их применения

Расширить свой умственный кругозор.

Методы исследования: изучение литературы, сравнение, наблюдение,

теоретический анализ, обобщение.

2.Что такое совершенное число?

Совершенное число - натуральное число , равное сумме всех своих собственных делителей (т. е. всех положительных делителей, включая 1,но отличных от самого числа,).

Первое совершенное число имеет следующие собственные делители: 1, 2, 3; их сумма 1 + 2 + 3 равна 6.

Второе совершенное число имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма 1 + 2 + 4 + 7 + 14 равна 28.

Третье совершенное число 496 имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 равна 496.

Четвертое совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 равна 8128.

По мере того, как натуральные числа возрастают, совершенные числа встречаются всё реже.

3. История появления совершенных чисел

Древнегреческий математик и философ Пифагор , он же создатель религиозно-философской школы пифагорейцев (570-490 гг. до н. э), ввел понятия избыточные и недостаточные числа.

Если сумма делителей числа больше самого числа, то такое число называется «избыточным». Например, 12 – избыточное число, так как сумма его делителей равна 16. Если сумма делителей числа меньше самого числа, то такое число называется «недостаточным».

Например, 10 – недостаточное число, так как сумма его делителей (1, 2 и 5) равна лишь 8.

Пифагорейцы развивали свою философию из науки о числах. Совершенные числа, считали они, есть прекрасные образы добродетелей. Они представляют собой середину между излишеством и недостатком. Они очень редки и порождаются совершенным порядком. В противоположность этому сверхизобильные и несовершенные числа, которых сколь угодно много, не расположены в порядке и не порождаются с некоторой определенной целью. И поэтому они имеют большое сходство с пороками, которые многочисленны, не упорядочены и не определены.

«Совершенное число есть равное своим долям». Эти слова принадлежат Евклиду , древнегреческому математику, автору первого из дошедших до нас теоретических трактатов по математике «Начала»(3 век до н.э.). До Евклида были известны только два совершенных числа, и никто не знал, существуют ли другие совершенные числа и сколько таких чисел вообще может быть. Благодаря своей формуле 2 p-1 *(2 p -1)- совершенное число, если (2 p -1)- простое число, Так Евклид сумел найти еще два совершенных числа: 496 и 8128. Способ нахождения совершенных чисел описан в IX книге «Начал».

Никомах Геразский , греческий философ и математик (1-я пол. 2 в. н. э.), в своем сочинении «Введение в арифметику» писал: «…Прекрасные и благородные вещи обычно редки и легко пересчитываемы, тогда как безобразные и плохие - многочисленны; вот и избыточные и недостаточные числа отыскиваются в большом количестве и беспорядочно, так что способ их нахождения не упорядочен, в то время как совершенные числа легко перечислимы и расположены в надлежащем порядке. Ведь среди однозначных чисел находится одно такое число 6, второе число 28 –единственное среди десятков, третье число 496 – единственное среди сотен, а четвёртое число 8128 –среди тысяч, если ограничиться десятью тысячами. И присущее им свойство состоит в том, что они попеременно оканчиваются то на шестёрку, то на восьмёрку, и все являются чётными.Изящный и надёжный способ их получения, не пропускающий ни одного совершенного числа и дающий одни только совершенные числа, состоит в следующем. Расположи все чётно-чётные числа, начиная с единицы, в один ряд, продолжая его так далеко, насколько пожелаешь: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096.

Затем складывай их последовательно, прибавляя каждый раз по одному,

и после каждого прибавления смотри на результат; и когда он будет

первичным и несоставным, умножь его на последнее прибавленное

число, в результате чего ты всегда будешь получать совершенное число.

Если же он будет вторичным и составным,умножать не надо, но надо

прибавить следующее число и посмотреть на результат; если он снова

окажется вторичным и составным, снова пропусти его и не умножай, но

прибавь следующее; но если он будет первичным и несоставным, то

умножив его на последнее прибавленное число, ты снова получишь

совершенное число, и так до бесконечности. И таким способом ты

получишь все совершенные числа по порядку, не пропустив ни одного

из них. К примеру, к 1 я прибавляю 2 и смотрю, какое число получилось

в сумме, и нахожу, что это число 3, первичное и несоставное в согласии

с тем, что говорилось выше, поскольку оно не имеет разноимённых

с ним долей, но только названную по нему долю; теперь я умножаю

его на последнее прибавленное число, которое есть 2, и получаю 6; и я

объявляю его первым настоящим совершенным числом, имеющим

такие доли, что они, будучи составленными вместе, укладываются в

самом числе: ведь единица является его названной по нему, о есть

шестой, долей, и 3 является половиной в соответствии с числом 2,и

обратно, двойка является третью. Число 28 получается этим же способом, когда следующее число 4 прибавляется к уже сложенным

выше. Ведь три числа 1, 2, 4 в сумме дают число 7, которое оказывается

первичным и несоставным, поскольку оно имеет только названную по

нему седьмую долю; а потому я умножаю его на последнее количество,

прибавленное к сумме, и мой результат составляет 28, равное своим

долям, и имеющее доли, названные по уже упомянутым числам:

половинную для четырнадцати, четвёртую для семёрки, седьмую для

4, четырнадцатую в противоположность половине, двадцать восьмую

в соответствии с собственным названием, а такая доля для всех чисел равна единице. И когда уже открыты в единицах 6 и в десятках 28, ты

8, и получишь 15; рассматривая его, я выясняю, что оно не является

первичным и несоставным, потому что в дополнение к названной по нему

доле оно имеет разноимённые с ним доли, пятую и третью; поэтому я не

умножаю его на 8, но прибавляю следующее число 16 и получаю число

31. Оно является первичным и несоставным, а потому его нужно, в

соответствии с общим правилом, умножить на последнее добавленное число 16, в результате чего получится 496 в сотнях; а затем получится 8128 в тысячах; и так далее, насколько будет желание продолжать…»

Следует сказать, что под вторичным числом Никомах понимает число, кратное данному, то есть то, которое можно получить, домножением на натуральные числа; долями он называет множители, входящие в разложение числа.

Если Никомах Геразский нашел лишь 4 первых совершенных числа,то Региомонтан(подлинное имя - Йоганн Мюллер), немецкий математик, живший в 15 веке,нашел пятое совершенное число - 33550336.

В XVI веке немецкий ученый Иоганн Эфраим Шейбель нашел ещё два совершенных числа- 8589869056 (8 миллиардов, 589 миллионов, 869 тысяч, 56), 137438691328 (137 миллиардов, 438 миллионов, 691 тысяча, 328).

Катальди Пьетро Антонио (1548-1626), бывший профессором математики во Флоренции и Болонье, который первый дал способ извлечения квадратных корней, тоже занимался поисками совершенных чисел. В его записках были указаны значения шестого и седьмого совершенных чисел. 8 589 869 056 (шестое число), 137 438 691 328 (седьмое число) для р=17 и 19)

Французский математик XVII века Марен Мерсенн предсказал, что многие числа, описываемые формулой , где p - простое число, также являются простыми. Ему удалось доказать, что для p=17, p=19, p=31 числа 8589869056, 137438691328, 2305843008139952128 являются совершенными.

Швейцарский, немецкий и российский математик и механик, внёсший фундаментальный вклад в развитие этих наук, Леонард Эйлер (начало 18в.) доказал, что все чётные совершенные числа соответствуют алгоритму построения чётных совершенных чисел, который описан в IX книге Начал Евклида. Также он доказал, что каждое чётное совершенное число имеет вид Mp, где число Мерсенна Mp является простым.

Девятое совершенное число было вычислено только в 1883 году. В нем оказалось тридцать семь знаков. Этот вычислительный подвиг совершил сельский священник из-под Перми Иван Михеевич Первушин . Первушин считал без всяких вычислительных приборов.

В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127).

На февраль 2013 года известно 48 простых чисел Мерсенна и соответствующих им чётных совершенных чисел, поиском новых простых чисел Мерсенна занимаются проекты распределённых вычислений GIMPS и OddPerfect.org.

4. Свойства совершенных чисел

1.Все чётные совершенные числа (кроме 6) являются суммой кубов последовательных нечётных натуральных чисел.

2.Все чётные совершенные числа являются треугольными числами ; кроме того, они являются шестиугольными числами, то есть, могут быть представлены в виде n(2n−1) для некоторого натурального числа n.

3.Сумма всех чисел, обратных делителям совершенного числа (включая его само), равна 2,то есть

4.Все чётные совершенные числа, кроме 6 и 496, заканчиваются в десятичной записи на 16, 28, 36, 56 или 76.

5.Все чётные совершенные числа в двоичной записи содержат сначала p единиц, за которыми следует p -1 нулей (следствие из их общего представления).

6. Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности.

5. Интересные факты

Из-за трудности нахождения и таинственной непостижимости совершенные числа в старину считались божественными. Так, средневековая церковь полагала, что изучение совершенных чисел ведет к спасению души, что нашедшему новое совершенное число гарантировано вечное блаженство. В XII веке церковь утверждала, что для спасения души необходимо найти пятое совершенное число.Существовало также убеждение, что мир потому прекрасен, что сотворен создателем за 6 дней. А вот род человеческий, дескать, несовершенен, ибо произошел от несовершенного числа 8. Ведь именно 8 людей спаслось от всемирного потопа в Ноевом ковчеге. Можно добавить, что в том же ковчеге спаслись еще семь пар чистых и семь пар нечистых животных, что в сумме составляет совершенное число 28. Да и вообще легко обнаружить множество подобных совпадений. Например, руки человеческие можно объявить совершенным орудием по той причине, что в десяти пальцах насчитывается 28 фаланг…

Египетская мера длины "локоть" содержала 28 пальцев.

На шестом месте на званом пиру возлежал самый уважаемый, самый почетный гость.

В 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала расположены двадцать восемь келий. Позже узнали, что это было здание неопифагорейской академии наук. В ней было двадцать восемь членов.

Даже сейчас, следуя древней традиции, некоторые академии по уставу состоят из 28 действительных членов. Несмотря на то, что совершенным числам приписывается мистический смысл,числа Мерсенна долгое время были абсолютно бесполезными, как, впрочем, и совершенные числа. Но в настоящее время на простых числах Мерсенна основана защита электронной информации, а также они используются в криптографии и других приложениях математики.

Лев Николаевич Толстой шутливо "хвастался" тем, что дата его рождения (28 августа по календарю того времени) является совершенным числом. Год рождения Л.Н.Толстого (1828) - тоже интересное число: последние две цифры (28) образуют совершенное число; а если переставить местами первые две цифры, то получится 8128 - четвертое совершенное число.

6. Примеры задач

1.Найдите все совершенные числа до 1000.

Ответ: 6 (1+2+3=6), 28 (1+2+4+7+14=28), 496 (1 + 2 + 4 + 8 + 16 + 31 + 62 +

124 + 248=496). Всего чисел-3.

2.Найдите совершенное число которое больше 496, но меньше 33550336.

Ответ: 8128.

3.Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Решение: метод от противного. Предположим, что совершенное число, делящееся на 3,не кратно 9. Тогда оно равно 3n, где n не кратно 3. При этом все натуральные делители числа 3n (включая его самого) можно

разбить на пары d и 3d, где d не делится на 3. Следовательно, сумма всех

делителей числа 3n (она равна 6n) делится на 4. Отсюда n кратно 2. Далее

заметим, что числа 3n /2 , n, n/2 и 1 будут различными делителями числа 3n,

их сумма равна 3n + 1 > 3n, откуда следует, что число 3n не может быть

совершенным. Противоречие. Значит, наше предположение неверно,и утверждение доказано.

4. Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

7.Заключение

Пифагор обожествлял числа. Он учил: числа управляют миром. Всемогущество чисел проявляется в том, что всё в мире подчиняется числовым отношениям. Пифагорейцы искали в этих отношениях и закономерности реального мира, и пути к мистическим тайнам и откровениям. Числам, учили они, свойственно всё – совершенство и несовершенство, конечность и бесконечность.

Рассмотрев одну из групп натуральных чисел - совершенные числа, я сделала вывод, что разнообразие натуральных чисел является бесконечным. Что касается утверждения о том, что среди совершенных чисел встречаются как чётные, так и нечетные числа,то оно не может считаться верным, так как все обнаруженные до сих пор совершенные числа являются чётными. Никто не знает, существует ли хоть одно нечётное совершенное число как и то, что множество совершенных чисел бесконечно.

В дальнейшем я хочу исследовать дружественные числа.

Дружественные числа - два различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и наоборот, сумма всех собственных делителей второго числа равна первому числу. Примером такой пары чисел является пара 220 и 284 .Частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Хотя большого значения для теории чисел эти пары не имеют, но являются любопытным элементом занимательной математики.

8.Список использованной литературы

  1. Волина В. В. Занимательная математика для детей./Ред. В. В. Фёдоров; Худ. Т. Фёдорова. – С.-Пб.: Лев и К°, 1996. – 320 с.
  2. Универсальная школьная энциклопедия. Т. 1. А – Л/Глав. ред. Е. Хлебалина, вед. ред. Д. Володихин. – М.: Аванта+, 2003. – 528с.
  3. Универсальная школьная энциклопедия. Т. 2. А – Л/Глав. ред. Е. Хлебалина, вед. ред. Д. Володихин. – М.: Аванта+, 2003. – 528с.
  4. Электронная детская энциклопедия Кирилл и Мефодий (версия 2007 год).
  5. Электронный сайт WikipediA/ http://www.wikipedia.org/
  6. http://eschool.karelia.ru/petrozavodsk/projects/zpivkoren/Lists/List/DispForm.aspx?ID=18
  7. http://www.ngpedia.ru/id598396p3.html
  8. http://www.ngpedia.ru/id598396p1.html
  9. http://academic.ru/dic.nsf/bse/133758/%D0%A1%D0%BE%D0%B2%D0%B5%D1%80%D1%88%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5
  10. http://arbuz.narod.ru/z_sov1.htm

(т. е. всех делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6 ), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28 ). По мере того как возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8 128, пятое - 33 550 336, шестое - 8 589 869 056.

История изучения

Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что совершает оборот вокруг каждые 28 дней, и утверждавшими, что сотворил мир за 6 дней. В сочинении «Град Божий» высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа. «Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».

Совершенные числа были предметом пристального внимания пифагорейцев, хотя в их время были известны только 2 первых совершенных числа. В частности, заметил, что совершенные числа не только равны сумме своих делителей, но и обладают некоторыми другими изящными свойствами. Например, совершенные числа всегда равны сумме последовательных натуральных чисел, начиная с единицы (т. е. являются ):

6 = 1 + 2 + 3 ,
28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 ,
496 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ... + 30 + 31 ,
8128 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ... + 126 + 127 .

Кроме того, одно из его открытий состояло в том, что совершенство чисел тесно связано с «двоичностью». Числа 4=2\cdot2 , 8=2\cdot2\cdot2 , 16=2\cdot2\cdot2\cdot2 и т. д. называются степенями числа 2 и могут быть представлены в виде 2 n , где n - число перемноженных двоек. Все степени числа 2 чуть-чуть «не достают» до того, чтобы стать совершенными, так как сумма их делителей всегда на единицу меньше самого числа, т. е. все степени двойки :

2 2 =2\cdot2 = 4 , 1 + 2 = 3 ,
2 3 =2\cdot2\cdot2 = 8 , 1 + 2 + 4 = 7 ,
2 4 =2\cdot2\cdot2\cdot2 = 16 , 1 + 2 + 4 + 8 = 15 ,
2 5 =2\cdot2\cdot2\cdot2\cdot2 = 32 , 1 + 2 + 4 + 8 + 16 = 31 ,

Так как каждому чётному совершенному числу соответствует некоторое простое число Мерсенна (и наоборот), то открытие новых чётных совершенных чисел равносильно открытию новых простых чисел Мерсенна, распределённым поиском которых занимается проект . На данный момент (ноябрь 2006) известно 44 простых числа Мерсенна, а значит, и 44 чётных совершенных числа.

Число 6 делится на себя, а также на 1, 2 и 3, и 6 = 1+2+3.
Число 28 имеет пять делителей, кроме самого себя: 1, 2, 4, 7 и 14, причем 28 = 1+2+4+7+14.
Можно заметить, что далеко не всякое натуральное число равно сумме всех своих делителей, отличающихся от этого числа. Числа, которые обладают этим свойством были названы совершенными.

Ещё Евклидом (3 в. до н. э.) было указано, что чётные совершенные числа можно получить из формулы: 2 p –1 (2 p – 1) при условии, что р и 2 p есть числа простые. Таким путём было найдено около 20 чётных совершенных числа. До сих пор неизвестно ни одного нечётного совершенного числа и вопрос о существовании их остаётся открытым. Исследования таких чисел были начаты пифагорейцами, приписывавшими им и их сочетаниям особый мистический смысл.

Первое самое меньшее совершенное число – это 6 (1 + 2 + 3 = 6).
Может быть, именно поэтому шестое место считалось самым почетным на пирах у древних римлян.

Второе по старшинству совершенное число – это 28 (1 + 2 + 4 + 7 + 14 = 28).
В некоторых ученых обществах и академиях полагалось иметь 28 членов. В Риме в 1917 г. при выполнении подземных работ обнаружилось помещение одной из древнейших академий: зал и вокруг него 28 кабинетов – как раз по числу членов академии.

По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число – 496 (1+2+48+16+31+62+124+248 = 496), четвёртое – 8128 , пятое – 33 550 336 , шестое – 8 589 869 056 , седьмое – 137 438 691 328 .

Первые четыре совершенные числа: 6, 28, 496, 8128 были обнаружены очень давно, 2000 лет назад. Эти числа приведены в Арифметике Никомаха Геразского, древнегреческого философа, математика и теоретика музыки.
Пятое совершенное число было выявлено в 1460 г, около 550 лет тому назад. Это число 33550336 обнаружил немецкий математик Региомонтан (XV век).

В XVI веке также немецкий ученый Шейбель нашел еще два совершенных числа: 8 589 869 056 и 137 438 691 328 . Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности. Пока известно 47 чётных совершенных чисел.

Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что Луна совершает оборот вокруг Земли каждые 28 дней, и утверждавшими, что Бог сотворил мир за 6 дней.
В сочинении «Град Божий» Св. Августин высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа. «Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».

Лев Николаевич Толстой не раз шутливо "хвастался" тем, что дата
его рождения 28 августа (по календарю того времени) является совершенным числом.
Год рождения Л.Н. Толстого (1828)– тоже интересное число: последние две цифры (28) образуют совершенное число; если обменять местами первые цифры, то получится 8128 – четвертое совершенное число.



Загрузка...