Кошки. Породы, стерилизация

Как работает теплоэлектростанция. Краткая характеристика работы тэс, тэц

Тепловая электростанция

Теплова́я электроста́нция

(ТЭС), энергетическая установка, на которой в результате сжигания органического топлива получают тепловую энергию, преобразуемую затем в электрическую. ТЭС – основной тип электрических станций, доля вырабатываемой ими электроэнергии составляет в промышленно развитых странах 70–80 % (в России в 2000 г. – ок. 67 %). Тепловая на ТЭС используется для нагрева воды и получения пара (на паротурбинных электростанциях) или для получения горячих газов (на газотурбинных). Для получения тепла органическое сжигают в котлоагрегатах ТЭС. В качестве топлива используется уголь, природный газ, мазут, горючие . На тепловых паротурбинных электростанциях (ТПЭС) получаемый в парогенераторе (котлоагрегате) пар приводит во вращение паровую турбину , соединённую с электрическим генератором. На таких электростанциях вырабатывается почти вся электроэнергия, производимая ТЭС (99 %); их кпд приближается к 40 %, единичная установленная мощность – к 3 МВт; топливом для них служат уголь, мазут, торф, сланцы, природный газ и т. д. Электростанции с теплофикационными паровыми турбинами, на которых тепло отработанного пара утилизируется и выдаётся промышленным или коммунальным потребителям, называются теплоэлектроцентралями. На них вырабатывается примерно 33 % электроэнергии, производимой ТЭС. На электростанциях с конденсационными турбинами весь отработанный пар конденсируется и в виде пароводяной смеси возвращается в котлоагрегат для повторного использования. На таких конденсационных электростанциях (КЭС) вырабатывается ок. 67 % электроэнергии, производимой на ТЭС. Официальное название таких электростанций в России – Государственная районная электрическая станция (ГРЭС).

Паровые турбины ТЭС соединяют с электрогенераторами обычно непосредственно, без промежуточных передач, образуя турбоагрегат. Кроме того, как правило, турбоагрегат объединяют с парогенератором в единый энергоблок, из них затем компонуют мощные ТПЭС.

В камерах сгорания газотурбинных тепловых электростанций сжигают газ или жидкое топливо. Получаемые продукты сгорания поступают на газовую турбину , вращающую электрогенератор. Мощность таких электростанций, как правило, составляет несколько сотен мегаватт, кпд – 26–28 %. Газотурбинные электростанции обычно сооружают в блоке с паротурбинной электростанцией для покрытия пиков электрической нагрузки. Условно к ТЭС относят также атомные электростанции (АЭС), геотермальные электростанции и электростанции с магнитогидродинамическими генераторами . Первые ТЭС, работающие на угле, появились в 1882 г. в Нью-Йорке, в 1883 г. – в Санкт-Петербурге.

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "тепловая электростанция" в других словарях:

    Тепловая электростанция - (ТЭС) - электрическая станция (комплекс оборудования, установок, аппаратуры), вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. В настоящее время среди ТЭС… … Нефтегазовая микроэнциклопедия

    тепловая электростанция - Электростанция, преобразующая химическую энергию топлива в электрическую энергию или электрическую энергию и тепло. [ГОСТ 19431 84] EN thermal power station a power station in which electricity is generated by conversion of thermal energy Note… … Справочник технического переводчика

    тепловая электростанция - Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива … Словарь по географии

    - (ТЭС) вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Большой Энциклопедический словарь

    ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ - (ТЭС) предприятие для производства электрической энергии в результате преобразования энергии, выделяющейся при сжигании органического топлива. Основные части ТЭС котельная установка, паровая турбина и электрогенератор, превращающий механическую… … Большая политехническая энциклопедия

    Тепловая электростанция - ПГУ 16. Тепловая электростанция По ГОСТ 19431 84 Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    - (ТЭС),вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. ТЭС работают на твёрдом, жидком, газообразном и смешанном топливе (угле, мазуте, природном газе, реже буром… … Географическая энциклопедия

    - (ТЭС), вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Энциклопедический словарь

    тепловая электростанция - šiluminė elektrinė statusas T sritis automatika atitikmenys: angl. thermal power station; thermal station vok. Wärmekraftwerk, n rus. тепловая электростанция, f pranc. centrale électrothermique, f; centrale thermoélectrique, f … Automatikos terminų žodynas

    тепловая электростанция - šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas

    - (ТЭС) Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 в. (в 1882 в Нью Йорке, 1883 в Петербурге, 1884 в… … Большая советская энциклопедия

Электроэнергию производят на электростанциях за счет использования энергии, скрытой в различных природных ресурсах. Как видно из табл. 1.2 это происходит в основном на тепловых (ТЭС) и атомных электростанциях (АЭС), работающих по тепловому циклу.

Типы тепловых электростанций

По виду генерируемой и отпускаемой энергии тепловые электростанции разделяют на два основных типа: конденсационные (КЭС), предназначенные только для производства электроэнергии, и теплофикационные, или теплоэлектроцентрали (ТЭЦ). Конденсационные электрические станции, работающие на органическом топливе, строят вблизи мест его добычи, а теплоэлектроцентрали размещают вблизи потребителей тепла – промышленных предприятий и жилых массивов. ТЭЦ также работают на органическом топливе, но в отличие от КЭС вырабатывают как электрическую, так и тепловую энергию в виде горячей воды и пара для производственных и теплофикационных целей. К основным видам топлива этих электростанций относятся: твердое – каменные угли, антрацит, полуантрацит, бурые угли, торф, сланцы; жидкое – мазут и газообразное – природный, коксовый, доменный и т.п. газ.

Таблица 1.2. Выработка электроэнергии в мире

Показатель

2010 г. (прогноз)

Доля общей выработки по электростанциям, % АЭС

ТЭС на газе

ТЭС на мазуте

Выработка электроэнергии по регионам, %

Западная Европа

Восточная Европа Азия и Австралия Америка

Средний Восток и Африка

Установленная мощность электростанций в мире (всего), ГВт

В том числе, % АЭС

ТЭС на газе

ТЭС на мазуте

ТЭС на угле и прочих видах топлива

ГЭС и ЭС на других, возобновляемых, видах топлива

Выработка электроэнергии (суммарная),

млрд. кВт·ч


Атомные электростанции преимущественно конденсационного типа используют энергию ядерного топлива.

В зависимости от типа теплосиловой установки для привода электрогенератора электростанции подразделяются на паротурбинные (ПТУ), газотурбинные (ГТУ), парогазовые (ПГУ) и электростанции с двигателями внутреннего сгорания (ДЭС).

В зависимости от длительности работы ТЭС в течение года по покрытию графиков энергетических нагрузок, характеризующихся числом часов использования установленной мощностиτ у ст , электростанции принято классифицировать на: базовые (τ у ст > 6000 ч/год); полупиковые (τ у ст = 2000 – 5000 ч/год); пиковые (τ у ст < 2000 ч/год).

Базовыми называют электростанции, несущие максимально возможную постоянную нагрузку в течение большей части года. В мировой энергетике в качестве базовых используют АЭС, высокоэкономические КЭС, а также ТЭЦ при работе по тепловому графику. Пиковые нагрузки покрывают ГЭС, ГАЭС, ГТУ, обладающие маневренностью и мобильностью, т.е. быстрым пуском и остановкой. Пиковые электростанции включаются в часы, когда требуется покрыть пиковую часть суточного графика электрической нагрузки. Полупиковые электростанции при уменьшении общей электрической нагрузки либо переводятся на пониженную мощность, либо выводятся в резерв.

По технологической структуре тепловые электростанции подразделяются на блочные и неблочные. При блочной схеме основное и вспомогательное оборудование паротурбинной установки не имеет технологических связей с оборудованием другой установки электростанции. Для электростанций на органическом топливе при этом к каждой турбине пар подводится от одного или двух соединенных с ней котлов. При неблочной схеме ТЭС пар от всех котлов поступает в общую магистраль и оттуда распределяется по отдельным турбинам.



На конденсационных электростанциях, входящих в крупные энергосистемы, применяются только блочные системы с промежуточным перегревом пара. Неблочные схемы с поперечными связями по пару и воде применяются без промежуточного перегрева.

Принцип работы и основные энергетические характеристики тепловых электростанций

Электроэнергию на электростанциях производят за счет использования энергии, скрытой в различных природных ресурсах (уголь, газ, нефть, мазут, уран и др.), по достаточно простому принципу, реализовывая технологию преобразования энергии. Общая схема ТЭС (см. рис. 1.1) отражает последовательность такого преобразования одних видов энергии в другие и использования рабочего тела (вода, пар) в цикле тепловой электростанции. Топливо (в данном случае уголь) сгорает в котле, нагревает воду и превращает ее в пар. Пар подается в турбины, преобразующие тепловую энергию пара в механическую энергию и приводящие в действие генераторы, вырабатывающие электроэнергию (см. раздел 4.1).

Современная тепловая электростанция – это сложное предприятие, включающее большое количество различного оборудования. Состав оборудования электростанции зависит от выбранной тепловой схемы, вида используемого топлива и типа системы водоснабжения.

Основное оборудование электростанции включает: котельные и турбинные агрегаты с электрическим генератором и конденсатором. Эти агрегаты стандартизованы по мощности, параметрам пара, производительности, напряжению и силе тока и т.д. Тип и количество основного оборудования тепловой электростанции соответствуют заданной мощности и предусмотренному режиму её работы. Существует и вспомогательное оборудование, служащее для отпуска теплоты потребителям и использования пара турбины для подогрева питательной воды котлов и обеспечения собственных нужд электростанции. К нему относится оборудование систем топливоснабжения, деаэрационно-питательной установки, конденсационной установки, теплофикационной установки (для ТЭЦ), систем технического водоснабжения, маслоснабжения, регенеративного подогрева питательной воды, химводоподготовки, распределения и передачи электроэнергии (см. раздел 4).

На всех паротурбинных установках применяется регенеративный подогрев питательной воды, существенно повышающий тепловую и общую экономичность электростанции, поскольку в схемах с регенеративным подогревом потоки пара, отводимые из турбины в регенеративные подогреватели, совершают работу без потерь в холодном источнике (конденсаторе). При этом для одной и той же электрической мощности турбогенератора расход пара в конденсаторе снижается и в результате к.п.д. установки растет.

Тип применяемого парового котла (см. раздел 2) зависит от вида топлива, используемого на электростанции. Для наиболее распространённых топлив (ископаемые угли, газ, мазут, фрезторф) применяются котлы с П-, Т-образной и башенной компоновкой и топочной камерой, разработанной применительно к тому или иному виду топлива. Для топлив с легкоплавкой золой используются котлы с жидким шлакоудалением. При этом достигается высокое (до 90%) улавливание золы в топке и снижается абразивный износ поверхностей нагрева. Из этих же соображений для высокозольных топлив, таких как сланцы и отходы углеобогащения, применяются паровые котлы с четырехходовой компоновкой. На тепловых электростанциях используются, как правило, котлы барабанной или прямоточной конструкции.

Турбины и электрогенераторы согласуются по шкале мощности. Каждой турбине соответствует определенный тип генератора. Для блочных тепловых конденсационных электростанций мощность турбин соответствует мощности блоков, а число блоков определяется заданной мощностью электростанции. В современных блоках используются конденсационные турбины мощностью 150, 200, 300, 500, 800 и 1200 МВт с промежуточным перегревом пара.

На ТЭЦ применяются турбины (см. подраздел 4.2) с противодавлением (типа Р), с конденсацией и производственным отбором пара (типа П), с конденсацией и одним или двумя теплофикационными отборами (типа Т), а также с конденсацией, промышленным и теплофикационными отборами пара (типа ПТ). Турбины типа ПТ также могут иметь один или два теплофикационных отбора. Выбор типа турбины зависит от величины и соотношения тепловых нагрузок. Если преобладает отопительная нагрузка, то в дополнение к турбинам ПТ могут быть установлены турбины типа Т с теплофикационными отборами, а при преобладании промышленной нагрузки – турбины типов ПР и Р с промышленным отбором и противодавлением.

В настоящее время на ТЭЦ наибольшее распространение имеют установки электрической мощностью 100 и 50 МВт, работающие на начальных параметрах 12,7 МПа, 540–560°С. Для ТЭЦ крупных городов созданы установки электрической мощностью 175–185 МВт и 250 МВт (с турбиной Т-250-240). Установки с турбинами Т-250-240 являются блочными и работают при сверхкритических начальных параметрах (23,5 МПа, 540/540°С).

Особенностью работы электрических станций в сети является то, что общее количество электрической энергии, вырабатываемой ими в каждый момент времени, должно полностью соответствовать потребляемой энергии. Основная часть электрических станций работает параллельно в объединенной энергетической системе, покрывая общую электрическую нагрузку системы, а ТЭЦ одновременно и тепловую нагрузку своего района. Есть электростанции местного значения, предназначенные для обслуживания района и не подсоединенные к общей энергосистеме.

Графическое изображение зависимости электропотребления во времени называютграфиком электрической нагрузки . Суточные графики электрической нагрузки (рис.1.5) меняются в зависимости от времени года, дня недели и характеризуются обычно минимальной нагрузкой в ночной период и максимальной нагрузкой в часы пик (пиковая часть графика). Наряду с суточными графиками большое значение имеют годовые графики электрической нагрузки (рис. 1.6), которые строятся по данным суточных графиков.

Графики электрических нагрузок используются при планировании электрических нагрузок электростанций и систем, распределении нагрузок между отдельными электростанциями и агрегатами, в расчетах по выбору состава рабочего и резервного оборудования, определении требуемой установленной мощности и необходимого резерва, числа и единичной мощности агрегатов, при разработке планов ремонта оборудования и определении ремонтного резерва и др.

При работе с полной нагрузкой оборудование электростанции развивает номинальную или максимально длительную мощность (производительность), которая является основной паспортной характеристикой агрегата. На этой наибольшей мощности (производительности) агрегат должен длительно работать при номинальных значениях основных параметров. Одной из основных характеристик электростанции является ее установленная мощность, которая определяется как сумма номинальных мощностей всех электрогенераторов и теплофикационного оборудования с учетом резерва.

Работа электростанции характеризуется также числом часов использования установленной мощности , которое зависит от того, в каком режиме работает электростанция. Для электростанций, несущих базовую нагрузку, число часов использования установленной мощности составляет 6000–7500 ч/год, а для работающих в режиме покрытия пиковых нагрузок – менее 2000–3000 ч/год.

Нагрузку, при которой агрегат работает с наибольшим к.п.д., называют экономической нагрузкой. Номинальная длительная нагрузка может быть равна экономической. Иногда возможна кратковременная работа оборудования с нагрузкой на 10–20% выше номинальной при более низком к.п.д. Если оборудование электростанции устойчиво работает с расчетной нагрузкой при номинальных значениях основных параметров или при изменении их в допустимых пределах, то такой режим называется стационарным.

Режимы работы с установившимися нагрузками, но отличающимися от расчетных, или с неустановившимися нагрузками называют нестационарными или переменными режимами. При переменных режимах одни параметры остаются неизменными и имеют номинальные значения, другие – изменяются в определенных допустимых пределах. Так, при частичной нагрузке блока давление и температура пара перед турбиной могут оставаться номинальными, в то время как вакуум в конденсаторе и параметры пара в отборах изменятся пропорционально нагрузке. Возможны также нестационарные режимы, когда изменяются все основные параметры. Такие режимы имеют место, например, при пуске и остановке оборудования, сбросе и набросе нагрузки на турбогенераторе, при работе на скользящих параметрах и называются нестационарными.

Тепловая нагрузка электростанции используется для технологических процессов и промышленных установок, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха и бытовых нужд. Для производственных целей обычно требуется пар давлением от 0,15 до 1,6 МПа. Однако, чтобы уменьшить потери при транспортировке и избежать необходимости непрерывного дренирования воды из коммуникаций, с электростанции пар отпускают несколько перегретым. На отопление, вентиляцию и бытовые нужды ТЭЦ подает обычно горячую воду с температурой от 70 до 180°С.

Тепловая нагрузка, определяемая расходом тепла на производственные процессы и бытовые нужды (горячее водоснабжение), зависит от наружной температуры воздуха. В условиях Украины летом эта нагрузка (так же как и электрическая) меньше зимней. Промышленная и бытовая тепловые нагрузки изменяются в течение суток, кроме того, среднесуточная тепловая нагрузка электростанции, расходуемая на бытовые нужды, меняется в рабочие и выходные дни. Типичные графики изменения суточной тепловой нагрузки промышленных предприятий и горячего водоснабжения жилого района приведены на рис 1.7 и 1.8.

Эффективность работы ТЭС характеризуется различными технико-экономическими показателями, одни из которых оценивают совершенство тепловых процессов (к.п.д., расходы теплоты и топлива), а другие характеризуют условия, в которых работает ТЭС. Например, на рис. 1.9 (а ,б ) приведены примерные тепловые балансы ТЭЦ и КЭС.

Как видно из рисунков, комбинированная выработка электрической и тепловой энергии обеспечивает значительное повышение тепловой экономичности электростанций благодаря уменьшению потерь теплоты в конденсаторах турбин.

Наиболее важными и полными показателями работы ТЭС являются себестоимости электроэнергии и теплоты.

Тепловые электростанции имеют как преимущества, так и недостатки в сравнении с другими типами электростанций. Можно указать следующие достоинства ТЭС:

  • относительно свободное территориальное размещение, связанное с широким распространением топливных ресурсов;
  • способность (в отличие от ГЭС) вырабатывать энергию без сезонных колебаний мощности;
  • площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС и ГЭС;
  • ТЭС сооружаются гораздо быстрее, чем ГЭС или АЭС, а их удельная стоимость на единицу установленной мощности ниже по сравнению с АЭС.
  • В то же время ТЭС обладают крупными недостатками:
  • для эксплуатации ТЭС обычно требуется гораздо больше персонала, чем для ГЭС, что связано с обслуживанием весьма масштабного по объему топливного цикла;
  • работа ТЭС зависит от поставок топливных ресурсов (уголь, мазут, газ, торф, горючие сланцы);
  • переменность режимов работы ТЭС снижают эффективность, повышают расход топлива и приводят к повышенному износу оборудования;
  • существующие ТЭС характеризуются относительно низким к.п.д. (в основном до 40%);
  • ТЭС оказывают прямое и неблагоприятное воздействие на окружающую среду и не являются эколигически «чистыми» источниками электроэнергии.
  • Наибольший ущерб экологии окружающих регионов приносят электростанции, работающие на угле, особенно высокозольном. Среди ТЭС наиболее «чистыми» являются станции, использующие в своем технологическом процессе природный газ.

По оценкам экспертов, ТЭС всего мира выбрасывают в атмосферу ежегодно около 200–250 млн. тонн золы, более 60 млн. тонн сернистого ангидрида, большое количество оксидов азота и углекислого газа (вызывающего так называемый парниковый эффект и приводящего к долгосрочным глобальным климатическим изменениям), поглощая большое количество кислорода. Кроме того, к настоящему времени установлено, что избыточный радиационный фон вокруг тепловых электростанций, работающих на угле, в среднем в мире в 100 раз выше, чем вблизи АЭС такой же мощности (уголь в качестве микропримесей почти всегда содержит уран, торий и радиоактивный изотоп углерода). Тем не менее, хорошо отработанные технологии строительства, оборудования и эксплуатации ТЭС, а также меньшая стоимость их сооружения приводят к тому, что на ТЭС приходится основная часть мирового производства электроэнергии. По этой причине совершенствованию технологий ТЭС и снижению отрицательного влияния их на окружающую среду во всем мире уделяется большое внимание (см. раздел 6).

Назначение теплоэлектростанции заключается в превращении химической энергии топлива в электрическую энергию. Так как совершить такое преобразование непосредственно оказывается практически невозможным, то приходится сначала превращать химическую энергию топлива в тепло, что производится путем сжигания топлива, затем преобразовывать тепло в механическую энергию и, наконец, эту последнюю превращать в электрическую энергию.

На рисунке ниже представлена простейшая схема тепловой части электрической станции, именуемой часто паросиловой установкой. Сжигание топлива производится в топке . При этом . Полученное тепло передается воде, находящейся в паровом котле. Вследствие этого вода нагревается и затем испаряется, образуя так называемый насыщенный пар, т. е. пар, имеющий ту же температуру, что и кипящая вода. Далее тепло подводится к насыщенному пару, в результате чего образуется перегретый пар, т. е. пар, имеющий более высокую температуру, чем испаряющаяся при том же давлении вода. Перегретый пар получается из насыщенного в пароперегревателе, в большинстве случаев представляющем собой змеевик из стальных труб. Пар движется внутри труб, с внешней же стороны змеевик омывается горячими газами.

Если бы давление в котле было равно атмосферному, то воду необходимо было бы нагреть до температуры 100° С; при дальнейшем сообщении тепла она начала бы быстро испаряться. Получающийся при этом насыщенный пар имел бы также температуру 100° С. При атмосферном давлении пар будет перегретым в том случае, когда температура его выше 100° С. Если давление в котле выше атмосферного, то насыщенный пар имеет температуру выше 100° С. Температура насыщенного пара тем выше, чем больше давление. В настоящее время в энергетике вообще не применяются паровые котлы с давлением, близким к атмосферному. Гораздо более выгодным оказывается применение паровых котлов, рассчитанных на значительно большее давление, порядка 100 атмосфер и более. Температура насыщенного пара при этом составляет 310° С и более.

Из пароперегревателя перегретый водяной пар по стальному трубопроводу подается к тепловому двигателю, чаще всего - . В существующих паросиловых установках электрических станций другие двигатели почти никогда не применяются. Перегретый водяной пар, поступающий в тепловой двигатель, содержит большой запас тепловой энергии, выделившейся в результате сжигания топлива. Задачей теплового двигателя является преобразование тепловой энергии пара в механическую энергию.

Давление и температура пара на входе в паровую турбину, именуемые обычно , значительно выше, чем давление и температура пара на выходе из турбины. Давление и температура пара на выходе из паровой турбины, равные давлению и температуре в конденсаторе, называются обычно . В настоящее время, как уже было сказано, в энергетике применяется пар весьма высоких начальных параметров, с давлением до 300 атмосфер и с температурой до 600° С. Конечные параметры, напротив, выбираются низкими: давление около 0,04 атмосферы, т. е. в 25 раз меньше атмосферного, а температура около 30° С, т. е. близкой к температуре окружащей среды. При расширении пара в турбине вследствие уменьшения давления и температуры пара количество заключенной в нем тепловой энергии на много уменьшается. Так как процесс расширения пара происходит весьма быстро, то за это весьма короткое время сколько-нибудь значительный переход тепла от пара к окружающей среде осуществиться не успевает. Куда же идет избыток тепловой энергии? Известно ведь, что согласно основному закону природы - закону сохранения и превращения энергии - невозможно уничтожить или получить «из ничего» любое, даже самое малое, количество энергии. Энергия может только переходить из одного вида в другой. Очевидно, именно с такого рода преобразованием энергии мы имеем дело и в данном случае. Избыток тепловой энергии, заключенный ранее в паре, перешел в механическую энергию и может быть использован по нашему усмотрению.

О том, как работает паровая турбина, рассказывается в статье о .

Здесь мы скажем только, что струя пара, поступающая на лопатки турбины, имеет весьма большую скорость, часто превышающую скорость звука. Струя пара приводит во вращение диск паровой турбины и вал, на который диск насажен. Вал турбины может быть связан, например, с электрической машиной - генератором. В задачу генератора входит преобразование механической энергии вращения вала в энергию электрическую. Таким образом, химическая энергия топлива в паросиловой установке превращается в механическую и далее в электрическую энергию, которую можно хранить в ИБП переменного тока.

Пар, совершивший работу в двигателе, поступает в конденсатор. По трубкам конденсатора непрерывно прокачивается охлаждающая вода, забираемая обычно из какого-либо естественного водоема: реки, озера, моря. Охлаждающая вода забирает тепло от пара, поступившего в конденсатор, вследствие чего пар конденсируется, т. е. превращается в воду. Образовавшаяся в результате конденсации вода с помощью насоса подается в паровой котел, в котором снова испаряется, и весь процесс повторяется заново.

Таково в принципе действие паросиловой установки теплоэлектрической станции. Как видно, пар служит посредником, так называемым рабочим телом, с помощью которого химическая энергия топлива, преобразованная в тепловую энергию, превращается в механическую энергию.

Не следует думать, конечно, что устройство современного, мощного, парового котла или теплового двигателя столь просто, как это показано на рисунке выше. Напротив, котел и турбина, являющиеся важнейшими элементами паросиловой установки, имеют весьма сложное устройство.

К объяснению работы и мы сейчас и приступаем.

Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо природного источника в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.

Определение

ТЭС — это э лектростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.

ТЭС — это (расшифровка с амой аббревиатуры выглядит как "тепловая электростанция"), помимо всего прочего, комплекс с довольно-таки высоким КПД. В зависимости от вида используемых турбин этот показатель на станциях подобного типа может быть равен 30 - 70%.

Какие существуют разновидности ТЭС

Классифицироваться станции этого типа могут по двум основным признакам:

  • назначению;
  • типу установок.

В первом случае различают ГРЭС и ТЭЦ. ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как "конденсационная электростанция".

ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как "теплоэнергоцентраль".

Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:

  • парогазовые.

ТЭС и ТЭЦ: различия

Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.

Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.

Какие предъявляются требования к ТЭС

ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:

  • помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
  • должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
  • источники водоснабжения следует тщательно защищать от попадания в них сточных вод ;
  • системы водоподготовки на станциях следует обустраивать безотходные.

Принцип работы ТЭС

ТЭС — это электростанция , на которой могут использоваться турбины разного типа. Далее рассмотрим принцип работы ТЭС на примере одного из самых распространенных ее типов — ТЭЦ. Осуществляется выработка энергии на таких станциях в несколько этапов:

    Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в данном случае выступает подогретый воздух.

    Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.

    Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.

    Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор. Здесь он превращается в воду, которая подается через подогреватели в деаэратор.

    Деаэ рированная вода подогревается и подается в котел.

    Преимущества ТЭС

    ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:

  • дешевизну возведения в сравнении с большинством других видов электростанций;
  • дешевизну используемого топлива;
  • невысокую стоимость выработки электроэнергии.

Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.

Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.

Недостатки ТЭС

Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

    Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 - 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.

    Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 - 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

Примеры станций

Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться любая ТЭС, электростанция. Примеры таких комплексов представляем в списке ниже.

    Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.

    Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.

    Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.

    Липецкая ТЭЦ -2 (515 МВТ). Работает на природном газе.

    ТЭЦ-26 «Мосэнерго» (1800 МВт).

    Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.

Вместо заключения

Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС — это разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.

Первая вырабатывает и тепловую, и электрическую энергию, а вторая - только электроэнергию. В обоих случаях речь идет о тепловых электростанциях, различия между которыми существенны, но не принципиальны - в ЕЭС России есть ТЭЦ, работающие в конденсационном режиме, и ГРЭС, «разжалованные» в теплоцентрали.

Любая электростанция представляет собой комплекс из оборудования, с помощью которого организуется преобразование энергии определенного источника (как правило, природного) в электрическую и тепловую энергию. В гидроэнергетике таким источником выступает вода, в атомной - уран, а на тепловых электростанциях (ТЭС) применимо большое разнообразие элементов (от газа, угля и нефтепродуктов до биотоплива, торфа и геотермальных скважин). В России порядка 70% электрогенерации обеспечивают именно ТЭС.

В качестве расхожих обозначений ТЭС используется две аббревиатуры - ГРЭС и ТЭЦ. Для обывателей они зачастую малопонятны, причем первую еще и путают с ГЭС, при том что это вообще разные виды генерации. Гидроэлектростанция работает за счет водяного потока, а ее плотины для этого перегораживают реки (но есть исключения), а ГРЭС - за счет пара, хотя и такая станция может располагать собственным водохранилищем. Однако ТЭС, которым также, как и ГЭС, жизненно необходима вода, способны эффективно функционировать и вдали от рек и водоемов - в таком случае на них обычно строят градирни, один из самых монументальных и заметных (после дымовых труб) технических элементов в тепловой энергетике. Особенно в зимнее время.

Главное - электричество

Обозначение «ГРЭС» - пережиток советского индустриального мегапроекта, на начальном этапе которого, в рамках плана ГОЭЛРО, решалась задача ликвидации дефицита, прежде всего, электрической энергии. Расшифровывается оно просто - «государственная районная электрическая станция». Районами в СССР называли территориальные объединения (промышленности с населением), в которых можно было организовать единое энергоснабжение. И в узловых географических точках, обычно вблизи крупных месторождений сырья, которое можно было использовать в качестве топлива, и ставили ГРЭС. Впрочем, газ на такие станции можно подавать и по трубопроводам, а уголь, мазут и другие виды топлива завозить по железной дороге. А на Березовскую ГРЭС компании «Юнипро» в красноярском Шарыпово уголь вообще приходит по 14-километровому конвейеру.

В современном понимании ГРЭС - это конденсационная электростанция (КЭС), по сравнению с ТЭЦ, очень мощная. Ведь главная задача такой станции - выработка электроэнергии, причем в базовом режиме (то есть равномерно в течение дня, месяца или года).

Поэтому ГРЭС, как правило, расположены вдали от крупных городов - благодаря линиям электропередач такие объекты генерации работают на всю энергосистему. И даже на экспорт - как, например, Гусиноозерская ГРЭС в Бурятии, с момента своего запуска в 1976 году обеспечивающая львиную долю поставок в Монголию. И выполняющая для этой страны роль «горячего резерва».

Интересно, что далеко не все станции, имеющие в своем названии аббревиатуру «ГРЭС», являются конденсационными; некоторые из них давно работают как теплоэлектроцентрали. Например, Кемеровская ГРЭС «Сибирской генерирующей компании» (СГК). «Изначально, в 1930-е годы, она вырабатывала только электроэнергию. Тем более что энергодефицит тогда был большой. Но когда вокруг станции вырос город Кемерово, на первый план вышел другой вопрос - как отапливать жилые кварталы? Тогда станцию перепрофилировали в классическую теплоэлектроцентраль, оставив лишь историческое название - ГРЭС. Для того, чтобы работник с гордостью мог сказать: «Я работаю на ГРЭС!». Потребление угля на электричество и тепло на станции идет сегодня в пропорции 50 на 50», - объясняет «Кислород.ЛАЙФ» СГК Алексей Кутырев.

В то же время на других ГРЭС, входящих в СГК - например, на Томь-Усинской (1345,4 МВт) и Беловской (1260 МВт) в Кузбассе, а также на Назаровской (1308 МВт) в Красноярском крае - 97% сжигаемого угля идет на генерацию электричества. И всего 3% - на выработку тепла. И такая же картина, за редким исключением - практически на любой другой ГРЭС.

Алексей Кутырев

Начальник управления эксплуатации ТЭС Кузбасского филиала

Крупнейшей в России ГРЭС и третьей в мире тепловой станцией является Сургутская ГРЭС-2 (входит в «Юнипро») - ее мощность 5657,1 МВт (мощнее в нашей стране - только две ГЭС, Саяно-Шушенская и Красноярская). При довольно приличном КИУМ более 64,5% эта станция выработала в 2017 году почти 32 млрд кВт*часов электрической энергии. Эта ГРЭС работает на попутном нефтяном и природном газе. Крупнейшей же по мощности ГРЭС в стране, работающей на твердом топливе (угле), является Рефтинская - она расположена в 100 км от Екатеринбурга. 3,8 ГВт электрической мощности позволяют вырабатывать объемы, покрывающие 40% потребности всей Свердловской области. В качестве основного топлива на станции используется экибастузский каменный уголь.


В приоритете - тепло

Теплоэнергоцентрали (ТЭЦ) - это еще один тип ТЭС, но это не конденсационная, а теплофикационная станция. ТЭЦ, главным образом, производят тепло - в виде технологического пара и горячей воды (в том числе для горячего водоснабжения и отопления жилых и промышленных объектов). Поэтому ТЭЦ являются ключевым элементом в централизованных системах теплоснабжения в городах , по уровню проникновения которых Россия является одним из мировых лидеров. Средние и малые ТЭЦ являются также незаменимыми спутниками крупных промышленных предприятий. Ключевая черта ТЭЦ - когенерация: одновременное производство тепла и электричества . Это и эффективнее, и выгоднее выработки, например, только электроэнергии (как на ГРЭС) или только тепла (как на котельных). Поэтому в СССР в свое время и сделали ставку на повсеместное развитие теплофицикации.

Принципиальное отличие ТЭЦ от ГРЭС, при том что все это котлотурбинные и паротурбинные электростанции - разные типы турбин . На теплоэлектроцентралях ставят теплофикационные турбины марки «Т», отличие которых от конденсационных турбин типа «К» (которые работают на ГРЭС) - наличие регулируемых отборов пара. В дальнейшем он направляется, например, к подогревателям сетевой воды, откуда она идет в батареи квартир или в краны с горячей водой. Наибольшее распространение в нашей стране исторически получили турбины Т-100, так называемые «сотки» . Но работают на ТЭЦ и противодавленческие турбины типа «Р», которые производят технологический пар (у них нет конденсатора и пар, после того, как выработал электроэнергию в проточной части, идет напрямую промышленному потребителю). Бывают и турбины типа «ПТ», которые могут работать и на промышленность, и на теплофикацию.

В турбинах типа «К» процесс расширения пара в проточной части заканчивается его кондесацией (что позволяет получать на одной установке большую мощность - до 1,6 ГВт и более).

Алексей Кутырев

Начальник управления эксплуатации ТЭС Кузбасского филиала

«Для ТЭЦ электроэнергия, в отличие от ГРЭС - продукт побочный, такие станции в СССР и в России работают, прежде всего, для подогрева теплоносителя - и вырабатывают тепло, которое потом идет в жилые дома или на промышленные предприятия в виде пара. А сколько получается в итоге электроэнергия - не так уж и важно. Важно - выдать нужные гигакалории, чтобы потребителям, в основном - населению, было комфортно»

В отопительный сезон ТЭЦ работают по так называемому «тепловому графику» - поддерживают температуру сетевой воды в магистрали в зависимости от температуры наружного воздуха. В этом режиме ТЭЦ могут нести и базовую нагрузку по электроэнергии, демонстрируя, кстати, очень высокие коэффициенты использования установленной мощности (КИУМ). По электрическому графику ТЭЦ обычно работают в теплые месяцы года, когда отборы на теплофикацию с турбин отключаются. ГРЭС же работают исключительно по электрическому графику.

Нетрудно догадаться, что ТЭЦ в России гораздо больше ГРЭС - и все они, как правило, сильно различаются по мощности. Вариантов их работы также великое множество. Некоторые ТЭЦ, например, работают как ГРЭС - такова, к примеру, ТЭЦ-10 компании «Иркутскэнерго». Другие функционируют в тесной спайке с промышленными предприятиями - и потому не снижают свою мощность даже в летний период. Например, Казанская ТЭЦ-3 ТГК-16 снабжает паром гигант химиндустрии - «Казаньоргсинтез» (обе компании входят в Группу ТАИФ). А Ново-Кемеровская ТЭЦ СГК генерирует пар для нужд КАО «Азот». Некоторые станции обеспечивают теплом и горячей водой преимущественно население - например, все четыре ТЭЦ в Новосибирске с 1990-х практически прекратили производство технологического пара.

Случается, что теплоэлектроцентрали вообще не производят электрической энергии - хотя таких сейчас и меньшинство. Связано это с тем, что в отличие от гигакалорий, стоимость которых жестко регулируются государством, киловатты в России являются рыночным товаром. В этих условиях даже те ТЭЦ, что ранее не работали на оптовый рынок электроэнергии и мощности, постарались на него выйти. В структуре СГК, например, такой путь прошла Красноярская ТЭЦ-3 , до марта 2012 года вырабатывавшая только тепловую энергию. Но с 1 марта того года на ней ввели в строй первый угольный энергоблок в России на 208 МВт, построенный в рамках ДПМ. С тех пор эта станция вообще стала образцово-показательной в СГК по энергоэффективности и экологичности.

Крупнейшие ТЭЦ в России работают на газе и находятся под крылом «Мосэнерго». Самой мощной, вероятно, можно считать ТЭЦ-26 , расположенную в московском районе Бирюлево Западное - по крайней мере, по показателю электрической мощности 1841 МВт она опережает все другие ТЭЦ страны. Эта электростанция обеспечивает централизованное теплоснабжение промышленных предприятий, общественных и жилых зданий с населением более 2 млн человек в районах Чертаново, Ясенево, Бирюлево и Марьино. Тепловая мощность у этой ТЭЦ хоть и высока (4214 Гкал/час), но не является рекордной. У ТЭЦ-21 того же «Мосэнерго» мощность по теплу выше - 4918 Гкал/час, хотя по электроэнергии она немногим уступает «коллеге» (1,76 ГВт).


Подготовлено порталом "Кислород.ЛАЙФ"

Загрузка...