Кошки. Породы, стерилизация

Образование глюкозы. Организм умеет синтезировать глюкозу

Глюконеогенез - синтез глюкозы из соединений неуглеводной природы.

В организме взрослого человека за сутки может синтезироваться до 250 г глюкозы. Глюконеогенез осуществляется главным образом в печени (синтезируетя до 90 % всей глюкозы), в корковом веществе почек и в энтероцитах (совсем незначительно).

Глюконеогенез стимулируется при длительном голодании, при ограничении поступления углеводов с пищей, в период восстановления после мышечной нагрузки, у новорождённых в первые часы после рождения.

Субстраты глюконеогенеза. Истинными субстратами глюконеогенеза являютя пируват, оксалоацетат, фосфодиоксиацетон, которые непосредственно включаются в этот процесс. Все вещества неуглеводной природы, дающие эти метаболиты, являются субстратами глюконеогенеза: лактат→ПВК, метаболиты цикла Кребса→ЩУК, глицерол→фосфодиоксиацетон, пропионил-КоА→метаболиты цикла Кребса→ЩУК, глюкогенные аминокислоты→ПВК или ЩУК. Главный источник субстратов глюконеогенеза - глюкогенные аминокислоты. К глюкогенным аминокислотам относятся все протеиногенные аминокислоты, кроме лейцина и лизина.

Стехиометрия:

2ПВК + 4АТФ + 2ГТФ + 2НАДН.Н+ + 2Н + 6Н2О Глюкоза + 4АДФ + 2ГДФ + 6Фн + 2НАД +

Глюконеогенез протекает, в основном, по тому же пути, что и гликолиз, но в обратном направлении. Для обхода трех ключевых реакций гликолиза используются четыре специфических фермента глюконеогенеза.
Ключевые ферменты и ключевые реакции глюконеогенеза:

1. Пируваткарбоксилаза
2. Фосфоенолпируваткарбоксикиназа
3. Фруктозо-1,6-бисфосфатаза (Фруктозо-1,6-бисфосфат + Н2О и Фруктозо-6-фосфат + ФН)
4. Глюкозо-6-фосфатаза (Глюкозо-6-фосфат + Н2О и Глюкоза + ФН)

Энергетический баланс. На синтез молекулы глюкозы из двух молекул пирувата расходуется 4АТФ и 2ГТФ (6АТФ). Энергию для глюконеогенеза поставляет процесс β-окис- ления жирных кислот.

Регуляция глюконеогенеза. Глюконеогенез стимулируется в условиях гипогликемии при низком уровне инсулина и преобладании его антагонистов (глюкагона, катехоламинов, глюкокортикоидов).

1. Регуляция активности ключевых ферментов:

фруктозо-1,6-бисфосфатаза по аллостерическому механизму активируется АТФ, ингибирутся Фр-1,6-ФФ и АМФ;

пируваткарбоксилаза активируется СН3СО~КоА (аллостерический активатор).

2. Регуляция количества ключевых ферментов: глюкокортикоиды и глюкагон

индуцируют синтез ключевых ферментов, а инсулин - репрессирует.

3. Регуляция количества субстрата: количество субстратов глюконеогенеза увеличивается под действием глюкокортикоидов (катаболическое действие на белки мышечной и лимфоидной ткани, на жировую ткань), а также глюкагона (катаболическое действие на жировую ткань).

Биологическая роль глюконеогенеза:

1. Поддержание уровня глюкозы в крови. При длительном голодании (голодание более суток) глюконеогенез является единственным процессом, поставляющим глюкозу в кровь.

2. Возвращение лактата в метаболический фонд углеводов. Лактат, образующийся в процессе анаэробного окисления глюкозы в эритроцитах и скелетных мышцах, транспортируется кровью в печень и превращается в гепатоцитах в глюкозу. Это так называемый межорганный цикл Кори.

Глюконеогенез. Этот процесс характерен для представителей всех царств живых организмов, но наиболее важное значение имеет для клеток высших животных. Дело в том, что эмбриональные ткани, мозг, семенники, эритроциты в качестве источника углерода способны использовать только D-глюкозу. Если в рационе недостает углеводов, в печени индуцируется распад гликогена, но и этого источника может оказаться недостаточно (мозг человека в сутки потребляет более 120 г глюкозы). В таком случае глюкоза синтезируется в организме из неуглеводных предшественников в ходе глюконеогенеза. Наиболее активно глюконеогенез осуществляется у животных в клетках печени и почек.

Реакции глюконеогенеза в большой степени тождественны обратным реакциям гликолиза, и многие из них катализируются теми же ферментами, которые задействованы в гликолизе.

Итак, в гликолизе имеется три практически необратимые реакции, взамен которых в глюконеогенезе существуют обходные пути .

Первый обходной путь представляет собой превращение пирувата в фосфоенолпируват. Для непосредственного перевода пирувата в фосфоенолпируват недостаточно энергии расщепления АТР, поэтому данная стадия осуществляется в ходе нескольких реакций. Вначале пируват, образующийся преимущественно в цитоплазме (из лактата, аминокислот, в гликолизе), переводится в митохондрии и там карбоксилируется в оксалоацетат.

Катализирует реакцию пируваткарбоксилаза, использующая в качестве кофактора биотин. Оксалоацетат в митохондриях восстанавливается в малат (митохондриальная малатдегидрогеназа), который с помощью специфических переносчиков транспортируется в цитоплазму. В цитоплазме малат вновь окисляется в оксалоацетат (цитоплазматическая малатдегидрогеназа), который с помощью GTP-зависимой фосфоенолпируваткарбоксилазы декарбоксилируется в фосфоенолпируват (РEP).

Второй обходной путь в глюконеогенезе представляет собой превращение фруктозодифосфата во вруктозо-6-фосфат. В гликолизе фосфофруктокиназная реакция, сопровождающаяся гидролизом АТР, является необратимой. В глюконеогенезе функционирует другой фермент-фруктозодифосфатаза, которая катализирует практически необратимое отщепление фосфатной группы от первого атома углерода. Фруктозодифосфатаза, как и пируваткарбоксилаза, является аллостерическим ферментом. Его активность ингибируется с помощью АМР и активируется при участии АТР.

Третий обходной путь - дефосфорилирование глюкозо-6-фосфата, не может произойти с помощью прямого обращения гексокиназной реакции. Эту реакцию катализирует глюкозо-6-фосфатаза, которая локализована на внутренней поверхности мембран гладкого эндоплазматического ретикулума (ЭР). Поэтому для осуществления данной реакции глюкозо-6-фосфат транспортируется в ЭР, где дефосфорилируется в свободную глюкозу. Следует отметить, что глюкозо-6-фосфатаза отсутствует в таких тканях, как мышцы и мозг, поэтому они не могут поставлять в кровь свободную глюкозу.

Суммарное уравнение глюконеогенеза выглядит следующим образом:

Из приведенного баланса следует, что на образование одной молекулы глюкозы в процессе глюконеогенеза расходуется шесть высокоэнергетических фосфатных связей, а также две молекулы NADH. Важно отметить, что регуляция скорости синтеза глюкозы в этом пути осуществляется с помощью ферментов, не принимающих участие в гликолизе. При этом глюконеогенез наиболее интенсивно протекает в условиях повышенного содержания в клетке топливных молекул, в частности ацетил-СоА, и достаточного количества АТР.

Глицерол включается в путь глюконеогенеза через дигидроксиацетонфосфат, в который он превращается после фосфорилирования (с участием АТР) и дегидрирования.

Аминокислоты поступают в путь через такие метаболиты, как пируват и оксалоацетат, образующиеся в ходе перестроек их углеродных скелетов. Лактат перед вступлением в глюконеогенез должен окислиться до пирувата.

Глюконеогенез - это процесс синтеза глюкозы из веществ неуглеводной природы. У млекопитающих эту функцию выполняет в основном печень , в меньшей мере - почки и клетки слизистой кишечника . Главными суб­стратами глюконеогенеза являютсяпируват, лактат, глицерин, аминокислоты (рис.10).

Рисунок 10

Глюконеогенез обеспечивает потребности орга­низма в глюкозе в тех случаях, когда диета содержит недостаточное количество углеводов (физическая нагрузка, голодание). Постоянное поступление глюкозы особенно необходимо для нервной системы и эри­троцитов. При понижении концентрации глюкозы в крови ниже определенного критического уровня нарушается функционирование мозга; при тяжелой гипогликемии возникает коматозное состояние и мо­жет наступить летальный исход.

Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза. На рисунке показаны пункты включения первичных субстратов в глюконеогенез:

Глюкоза необходи­ма для жировой ткани как источник глицерола, входящего в состав глицеридов; она играет существенную роль в поддержании эффек­тивных концентраций метаболитов цикла лимон­ной кислоты во многих тканях. Даже в условиях, когда большая часть потребностей организма в калориях обеспечивается за счет жира, всегда сохраняется определенная потребность в глю­козе. Кроме того, глюкоза служит единственным ви­дом топлива для работы скелетной мышцы в анаэробных условиях. Она является предшествен­ником молочного сахара (лактозы) в молочных же­лезах и активно потребляется плодом в период раз­вития. Механизм глю­конеогенеза используется для удаления из крови продуктов тканевого метаболизма, например лактата, образующегося в мышцах и эритроцитах, глицерола, непрерывно образующегося в жировой ткани

Включение различных субстратов в глюконео­генез зависит от физиологического состояния орга­низма. Лактат является продуктом анаэробного гликоли­за в эритроцитах и работающих мышцах. Глицерин высвобождается при гидролизе жиров в жировой ткани в постабсорбтивный период или при физической нагрузке. Аминокислоты образуются в результате распада мышечных белков.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться (рис. 12). Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным:

Рисунок 12

Таких циклов существует три - соответственно трем необратимым реакциям. Эти циклы служат точками приложения регуляторных механизмов , в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза.

Направление реакцийпервого субстратного цик­ла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюко­зы в крови повышается. Актив­ность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реак­цияглюкоза ® глюкозо-6-фосфат. Кроме того, инсу­лин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата направляется по гликолитическому пути.

Превращение глюкозо-6-фосфата в глюкозу катализируется другой специфической фосфатазой-глюкозо-6-фосфатазой. Она присутствует в пе­чени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани по­ставлять глюкозу в кровь.

Распад гликогена с образованием глюкозо-1-фосфата осуществляется фосфорилазой. Синтез гликогена идет по совершенно другому пути, через образование уридиндифосфатглюкозы, и катализи­руетсягликогенсинтазой .

Второй субстратный цик­л: превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат, катализи­руется специфическим ферментомфруктозо-1,6-бисфосфатазой. Этот фермент имеется в печени и почках, он был также обнаружен в поперечнополосатых мышцах.

Направление реакцийвторого субстратного цик­ла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата.

Фруктозо-2,6-бисфосфат образуется путем фосфорилирования фруктозо-6-фосфата при участии би­функционального фермента (БИФ), который ка­тализирует также и обратную реакцию.

Киназная активность проявляется, когда бифунк­циональный фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для абсорбтивного периода, когда инсулин-глюкагоновый индекс высокий.

При низком инсулин-глюкагоновом индексе, ха­рактерном для периода длительного голодания, происходят фосфорилирование БИФ и проявление его фосфатазной активности, результатом чего яв­ляются снижение количества фруктозо-2,6-бисфосфата, замедление гликолиза и переключение на глюконеогенез.

Киназная и фосфатазная реакции катализируют­ся разными активными центрами БИФ, но в каждом из двух состояний фермента - фосфорилиро-ванном и дефосфорилированном - один из актив­ных центров ингибирован.

Когда запасы углеводов в организме становятся ниже нормы, некоторое количество глюкозы может образовываться из аминокислот и составной части жиров - глицерола. Этот процесс называют глюконеогенезом.

Глюконеогенез особенно важен для предупреждения существенного снижения уровня глюкозы в крови во время голодания. Глюкоза является основным субстратом, используемым для получения энергии такими тканями, как нервная ткань и клетки крови, поэтому в крови должно присутствовать достаточное количество глюкозы в промежутках между приемами пищи, которые могут составлять несколько часов.

Печень играет ключевую роль в поддержании уровня глюкозы в крови натощак, обеспечивая превращение депонированного гликогена в глюкозу (гликогенолиз), а также путем синтеза глюкозы, главным образом из лактата и аминокислот (глюконеогенез). Приблизительно 25% глюкозы, синтезированной печенью натощак, образуется путем глюконеогенеза, что способствует доставке необходимого мозгу количества глюкозы.
В условиях длительного отсутствия пищи значительное количество глюкозы может образовываться в почках из аминокислот и других предшественников.

Приблизительно 60% аминокислот из присутствующих в организме белков свободно превращаются в углеводы. Остальные 40% имеют химическую структуру, затрудняющую их превращение в углеводы или делающую этот процесс невозможным. Превращение каждой аминокислоты в глюкозу сопряжено с индивидуальными особенностями химических реакций.

Например, путем дезаминирования аланин может напрямую превращаться в пировиноградную кислоту; затем пировиноградная кислота превращается в глюкозу или запасается в виде гликогена. Большая часть используемых аминокислот может объединяться, превращаясь в различные сахара, содержащие 3, 4, 5 и даже 7 атомов углерода. Затем они вступают в фосфоглюконатные реакции и преобразуются в глюкозу.

Таким образом, путем дезаминирования и некоторых простых преобразований большое количество аминокислот становится глюкозой. Подобным способом глицерол также преобразуется в глюкозу или гликоген.

Регуляция глюконеогенеза . Уменьшение количества углеводов в клетках или снижение сахара в крови является основным стимулом для увеличения скорости глюконеогенеза. Кроме того, уменьшение количества углеводов может стать причиной изменения направления гликолитических или фосфоглюконатных реакций, что способствует превращению дезаминированных аминокислот в углеводы, наряду с глицеролом. Такой гормон, как кортизол, играет особенно важную роль в регуляции процессов глюконеогенеза.

Роль кортикотропина и глюкокортикоидов в глюконеогенезе. Если количество углеводов в клетках не соответствует нормальному уровню, это по не совсем понятной причине приводит к тому, что аденогипофиз начинает продуцировать большое количество гормона кортикотропина. Кортикотропин стимулирует кору надпочечников к продукции больших количеств глюкокор-тикоидных гормонов, особенно кортизола.

В свою очередь, кортизол мобилизует белки из большинства тканей организма, повышая уровень аминокислот в жидких средах организма. Большая часть выделяемых аминокислот сразу дезаминируется в печени и становится прекрасным субстратом для превращения в глюкозу. Таким образом, один из наиболее важных способов стимуляции глюконеогенеза опосредован выделением глюкокортикоидов из коры надпочечников.

Нормальная концентрация глюкозы в крови, взятой натощак спустя 3-4 ч после приема пищи, составляет 90 мг/дл. После приема пищи, содержащей большое количество углеводов, уровень глюкозы в крови иногда достигает почти 140 мг/дл, даже если у человека нет сахарного диабета.
Регуляция концентрации глюкозы в крови тесно связана с гормонами поджелудочной железы, инсулином и глюкагоном.

16.2.1. Глюконеогенез - биосинтез глюкозы из различных соединений неуглеводной природы. Биологическая роль глюконеогенеза заключается в поддержании постоянного уровня глюкозы в крови, что необходимо для нормального энергообеспечения тканей, для которых характерна непрерывная потребность в углеводах. Особенно это касается центральной нервной системы.

Роль глюконеогенеза возрастает при недостаточном поступлении углеводов с пищей. Так, в организме голодающего человека может синтезироваться до 200 г глюкозы в сутки. Глюконеогенез быстрее, чем другие метаболические процессы, реагирует на изменения диеты: введение с пищей большого количества белков и жиров активизирует процессы глюконеогенеза; избыток углеводов, наоборот, тормозит новообразование глюкозы.

Интенсивные физические нагрузки сопровождаются быстрым истощением запасов глюкозы в организме. В этом случае глюконеогенез является основным путём пополнения углеводных ресурсов, предупреждая развитие гипогликемии. Глюконеогенез в организме тесно связан также с процессами обезвреживания аммиака и поддержанием кислотно-основного баланса.

16.2.2. Основным местом биосинтеза глюкозы de novo является печень. Глюконеогенез протекает также в корковом слое почек. Принято считать, что вклад почек в глюконеогенез в физиологических условиях составляет около 10% глюкозы, синтезируемой в организме; при патологических состояниях эта доля может значительно возрастать. Незначительная активность ферментов глюконеогенеза обнаружена в слизистой тонкого кишечника.

16.2.3. Последовательность реакций глюконеогенеза представляет собой обращение соответствующих реакций гликолиза. Лишь три реакции гликолиза необратимы вследствие происходящих в ходе их значительных энергетических сдвигов:

а) фосфорилирование глюкозы; б) фосфорилирование фруктозо-6-фосфата; в) превращение фосфоенолпирувата в пируват.

Обход этих энергетических барьеров обеспечивают ключевые ферменты глюконеогенеза.

Обратный переход пирувата в фосфоенолпируват требует участия двух ферментов. Первый из них - пируваткарбоксилаза - катализирует реакцию образования оксалоацетата (рисунок 16.4, реакция 1). Коферментом пируваткарбоксилазы является биотин (витамин Н). Реакция протекает в митохондриях. Роль её заключается также в пополнении фонда оксалоацетата для цикла Кребса.

Все последующие реакции глюконеогенеза протекают в цитоплазме . Мембрана митохондрий непроницаема для оксалоацетата, и он переносится в цитоплазму в виде других метаболитов: малата или аспартата. В цитоплазме указанные соединения вновь переходят в оксалоацетат. При участии фосфоенолпируваткарбоксикиназы из оксалоацетата образуется фосфоенолпируват (рисунок 16.4, реакция 2).

Фосфоенолпируват в результате обращения ряда реакций гликолиза переходит во фруктозо-1,6-дифосфат. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируетсяфруктозодифосфатазой (рисунок 16.4, реакция 3).

Фруктозо-6-фосфат изомеризуется в глюкозо-6-фосфат. Заключительной реакцией глюконеогенеза является гидролиз глюкозо-6-фосфата при участии фермента глюкозо-6-фосфатазы (рисунок 16.4, реакция 4).

Рисунок 16.4. Обходные реакции глюконеогенеза.

16.2.4. Основными источниками глюкозы в глюконеогенезе являются лактат, аминокислоты, глицерол и метаболиты цикла Кребса.

Лактат - конечный продукт анаэробного окисления глюкозы. Может включаться в глюконеогенез после окисления до пирувата в лактатдегидрогеназной реакции (см. раздел «Гликолиз», рисунок 15.4, реакция 11). При продолжительной физической работе основным источником лактата является скелетная мускулатура, в клетках которой преобладают анаэробные процессы. Накопление молочной кислоты в мышцах ограничивает их работоспособность. Это связано с тем, что при повышении концентрации молочной кислоты в ткани снижается уровень рН (молочнокислый ацидоз). Изменение рН приводит к ингибированию ферментов важнейших метаболических путей. В утилизации образующейся молочной кислоты важное место принадлежитглюкозо-лактатному циклу Кори (рисунок 16.5).


Рисунок 16.5. Цикл Кори и глюкозо-аланиновый цикл (пояснения в тексте).

Глюкогенные аминокислоты , к которым относятся большинство белковых аминокислот. Ведущее место в глюконеогенезе среди аминокислот принадлежит аланину , который может превращаться в пируват путём трансаминирования. При голодании, физической работе и других состояниях в организме функционирует глюкозо-аланиновый цикл , подобный циклу Кори для лактата (рисунок 16.2). Существование цикла аланин - глюкоза препятствует отравлению организма, так как в мышцах нет ферментов, утилизирующих аммиак. В результате тренировки мощность этого цикла значительно возрастает.

Другие аминокислоты могут, подобно аланину, превращаться в пируват, а также в промежуточные продукты цикла Кребса (α-кетоглутарат, фумарат, сукцинил-КоА). Все эти метаболиты способны преобразовываться в оксалоацетат и включаться в глюконеогенез.

Глицерол - продукт гидролиза липидов в жировой ткани. Этот процесс значительно усиливается при голодании. В печени глицерол превращается в диоксиацетонфосфат - промежуточный продукт гликолиза и может быть использован в глюконеогенезе.

Жирные кислоты и ацетил-КоА не являются предшественниками глюкозы. Окисление этих соединений обеспечивает энергией процесс синтеза глюкозы.

16.2.5. Энергетический баланс. Путь синтеза глюкозы из пирувата (рисунок 16.6) содержит три реакции, сопровождающиеся потреблением энергии АТФ или ГТФ:

а) образование оксалоацетата из пирувата (затрачивается молекула АТФ); б) образование фосфоенолпирувата из оксалоацетата (затрачивается молекула ГТФ); в) обращение первого субстратного фосфорилирования - образование 1,3-дифосфоглицерата из 3-фосфоглицерата (затрачивается молекула АТФ).

Каждая из этих реакций повторяется дважды, так как для образования 1 молекулы глюкозы (С6 ) используются 2 молекулы пирувата (С3 ). Поэтому энергетический баланс синтеза глюкозы из пирувата составляет - 6 молекул нуклеозидтрифосфатов (4 молекулы АТФ и 2 молекулы ГТФ). При использовании других предшественников энергетический баланс биосинтеза глюкозы отличается.

Рисунок 16.6. Энергетический баланс биосинтеза глюкозы из лактата.

16.2.6. Регуляция глюконеогенеза. Скорость глюконеогенеза определяется доступностью субстратов - предшественников глюкозы. Увеличение концентрации в крови любого из предшественников глюкозы приводит к стимуляции глюконеогенеза.

Некоторые метаболиты являются аллостерическими эффекторами ферментов глюконеогенеза. Например, ацетил-КоА в повышенных концентрациях аллостерически активирует пируваткарбоксилазу, катализирующую первую реакцию глюконеогенеза. Аденозинмонофосфат, наоборот, оказывает ингибирующее действие на фруктозодифосфатазу, а избыток глюкозы ингибирует глюкозо-6-фосфатазу.

Гормон поджелудочной железы глюкагон, гормоны надпочечников адреналин и кортизол повышают скорость биосинтеза глюкозы в организме, увеличивая активность ключевых ферментов глюконеогенеза либо увеличивая концентрацию этих ферментов в клетках. Гормон поджелудочной железы инсулин способствует снижению скорости глюконеогенеза в организме.



Загрузка...