Кошки. Породы, стерилизация

Применение теоремы виета и исследование расположения корней квадратного уравнения относительно нуля. Расположение корней квадратного трехчлена

Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.
Как известно, в отношении уравнений с параметрами встречаются две постановки задачи.

  1. Решить уравнение (для каждого значения параметра найти все решения уравнения).
  2. Найти все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям.

В данной работе рассматривается и исследуется задача второго типа применительно к корням квадратного трехчлена, нахождение которых сводится к решению квадратного уравнения.
Автор надеется, что данная работа поможет учителям при разработке уроков и при подготовке учащихся к ЕГЭ.

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним из школьного курса алгебры основные уравнения aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром. Поскольку, в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

  1. Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1, (a – 2)х = a 2 4.
  2. Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например. При каких значениях параметра a уравнение 4х 2 4 aх + 1 = 0 имеет единственный корень?
  3. Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2)х 2 2aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 < а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств требует от ученика новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно из курса алгебры корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: У = х 2 – 2ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.
    2. Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <х о < 5.
    3. Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

МОУ «Средняя общеобразовательная школа №15»

г. Мичуринска Тамбовской области

Урок по алгебре в 9классе

«Расположение корней квадратного трехчлена в зависимости от значений параметра»

Разработала

учитель математики 1 категории

Бортникова М.Б.

Мичуринск - наукоград 201 6 год

Урок рассчитан на 2 часа.

Дорогие ребята! Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.

Цели урока: 1. Расширить представление о квадратных уравнениях 2.Научить находить все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям. 3. Развивать интерес к предмету.

Ход урока:

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним основные уравнения:
aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

    Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1 , (a – 2) х = a 2 4.

    Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например.

    a уравнение 4 х 2 4 aх + 1 = 0 имеет единственный корень?

    Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2) х 2 2 aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2 aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2 aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4
a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 <
а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств потребует от вас новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: у =
х 2 – 2 ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.

      Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <
      х о < 5.

      Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2 ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Примеры решения задач

3. Исследование расположения корней квадратного трехчлена в зависимости от искомых значений параметра а.

Задача № 2.

При каких значениях параметра а корни квадратного уравнения

х 2 – 4х – (а – 1)(а – 5) = 0 больше единицы?

Решение.

Рассмотрим функцию: у = х 2 – 4х – (а – 1)(а – 5)

Графиком функции является парабола. Ветви параболы направлены вверх.

Схематично изобразим параболу (геометрическую модель задачи).

Теперь от построенной геометрической модели перейдем к аналитической, т.е. опишем эту геометрическую модель адекватной ей системой условий.

    Имеются точки пересечения (или точка касания) параболы с осью х, следовательно, Д≥0, т.е. 16+4(а-1)(а-5)≥0.

    Замечаем, что вершина параболы расположена в правой полуплоскости относительно прямой х=1, т.е. ее абсцисса больше 1, т.е. 2>1 (выполняется при всех значениях параметра а).

    Замечаем, что у(1)>0, т.е. 1 – 4 – (а – 1)(а – 5)>0

В результате приходим к системе неравенств.

;

Ответ: 2<а<4.

Задача № 3.

Х 2 + ах – 2 = 0 больше единицы?

Решение.

Рассмотрим функцию: у = -х 2 + ах – 2

Графиком функции является парабола. Ветви параболы направлены вниз. Изобразим геометрическую модель рассматриваемой задачи.


У(1)

Составим систему неравенств.

, решений нет

Ответ. Таких значений параметра а нет.

Условия задачи № 2 и № 3, в которых корни квадратного трехчлена больше некоторого числа при искомых значениях параметра а, сформулируем следующим образом.

Общий случай № 1.

При каких значениях параметра а корни квадратного трехчлена

f (х) = ах 2 + вх + с больше некоторого числа к, т.е. к<х 1 ≤х 2 .

Изобразим геометрическую модель данной задачи и запишем соответствующую систему неравенств.

Таблица 1. Модель – схема.

Задача № 4.

При каких значениях параметра а корни квадратного уравнения

Х 2 +(а+1)х–2а(а–1) = 0 меньше единицы?

Решение.

Рассмотрим функцию: у = х 2 +(а+1)х–2а(а–1)

Графиком функции является парабола. Ветви параболы направлены вверх. По условию задачи корни меньше 1, следовательно, парабола пересекает ось х (или касается оси х левее прямой х=1).

Схематично изобразим параболу (геометрическая модель задачи).

у(1)

От геометрической модели перейдем к аналитической.

    Так как имеются точки пересечения параболы с осью ох, то Д≥0.

    Вершина параболы находится левее прямой х=1, т.е. ее абсцисса х 0 <1.

    Замечаем, что у(1)>0, т.е. 1+(а+1)-2а(а-1)>0.

Приходим к системе неравенств.

;

Ответ: -0,5<а<2.

Общий случай № 2.

При каких значениях параметра а оба корня трехчлена f (х) = ах 2 + вх + с будут меньше некоторого числа к: х 1 ≤х 2 <к.

Геометрическая модель и соответствующая система неравенств представлена в таблице. Необходимо учитывать тот факт, что существуют задачи, где первый коэффициент квадратного трехчлена зависит от параметра а. И тогда ветви параболы могут быть направлены как вверх, так и вниз, в зависимости от значений параметра а. Этот факт будем учитывать при создании общей схемы.

Таблица № 2.

f(k)

Аналитическая модель

(система условий).

Аналитическая модель

(система условий).

Задача № 5.

При каких значениях параметра а 2 -2ах+а=0 принадлежат интервалу (0;3)?

Решение.

Рассмотрим квадратный трехчлен у(х) = х 2 -2ах+а.

Графиком является парабола. Ветви параболы направлены вверх.

На рисунке представлена геометрическая модель рассматриваемой задачи.

У

У(0)

У(3)

0 х 1 х 0 х 1 3 х

От построенной геометрической модели перейдем к аналитической, т.е. опишем ее системой неравенств.

    Имеются точки пересечения параболы с осью х (или точка касания), следовательно, Д≥0.

    Вершина параболы находится между прямыми х=0 и х=3, т.е. абсцисса параболы х 0 принадлежит промежутку (0;3).

    Замечаем, что у(0)>0, а также у(3)>0.

Приходим к системе.

;

Ответ: а

Общий случай № 3.

При каких значениях параметра а корни квадратного трехчлена принадлежат интервалу (k ; m ), т.е. k <х 1 ≤х 2 < m

Таблица № 3. Модель – схема.

f (x )

f (k )

f (m )

k х 1 х 0 х 2 m x

f(x)

0 k x 1 x 0 x 2 m

f(k)

f(m)

Аналитическая модель задачи

Аналитическая модель задачи

ЗАДАЧА № 6.

При каких значениях параметра а только меньший корень квадратного уравнения х 2 +2ах+а=0 принадлежит интервалу Х(0;3).

Решение.

2 -2ах+а

Графиком является парабола. Ветви параболы направлены вверх. Пусть х 1 меньший корень квадратного трехчлена. По условию задачи х 1 принадлежит промежутку (0;3). Изобразим геометрическую модель задачи, отвечающую условиям задачи.

Y (x )

Y (0)

0 x 1 3 x 0 x 2 x

Y (3)

Перейдем к системе неравенств.

1) Замечаем, что у(0)>0 и у(3)<0. Так как ветви параболы направлены вверх и у(3)<0, то автоматически Д>0. Следовательно, это условие записывать в систему неравенств не нужно.

Итак, получаем следующую систему неравенств:

Ответ: а >1,8.

Общий случай № 4.

При каких значениях параметра а меньший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. k <х 1 < m <х 2 .

Таблица № 4 . Модель – схема.

f(k)

k x 1 0 m x 2

f(m)

F(x)

f(m)

k x 1 m x 2 x

f(k)

Аналитическая модель

Аналитическая модель

ЗАДАЧА № 7.

При каких значениях параметра а только больший корень квадратного уравнения х 2 +4х-(а+1)(а+5)=0 принадлежит промежутку [-1;0).

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 +4х-(а+1)(а+5).

Графиком является парабола. Ветви направлены вверх.

Изобразим геометрическую модель задачи. Пусть х 2 – больший корень уравнения. По условию задачи только больший корень принадлежит промежутку.


y (х)

y (0)

x 1 -1 х 2 0 х

y (-1)

Замечаем, что у(0)>0, а у(-1)<0. Кроме этого ветви параболы направлены вверх, значит, при этих условиях Д>0.

Составим систему неравенств и решим ее.

Ответ:

Общий случай № 5.

При каких значениях параметра а больший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. х 1 < k <х 2 < m .

Таблица № 5. Модель – схема.

f(x)

f(m)

0 x 1 k x 2 m x

f(k)

f(x)

f(k)

x 1 0 k x 2 m

f(m)

Аналитическая модель

Аналитическая модель

З АДАЧА № 8.

При каких значениях параметра а отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+а-11

Графиком является парабола.

Геометрическая модель данной задачи представлена на рисунке.

Y (x )

X 1 -1 0 3 x 2 x

Y (-1)

Y (3)

При этих условиях Д>0, так как ветви параболы направлены вверх.

Ответ: а

Общий случай № 6.

При каких значениях параметра а корни квадратного трехчлена находятся вне заданного интервала (k ; m ), т.е. х 1 < k < m <х 2 .

х 2 -(2а+1)х+4-а=0 лежат по разные стороны числа от числа 3?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+4-а.

Графиком является парабола, ветви направлены вверх (первый коэффициент равен 1). Изобразим геометрическую модель задачи.


X 1 3 x 2 x

Y (3)

Перейдем от геометрической модели к аналитической.

  1. Замечаем, что у(3)<0, а ветви параболы направлены вверх. При этих условиях Д>0 автоматически. +вх+с меньше некоторого числа к: х 1 ≤ х 2

    3. При каких значениях параметра а корни квадратного трехчлена ах 2 +вх+с принадлежат интервалу (к,т) к<х 1 ≤х 2

    4. При каких значениях параметра а только меньший корень квадратного трехчлена ах 2 +вх+с принадлежит заданному интервалу (к,т),т.е.к<х 1 <т<х 2

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Корни квадратного уравнения х 2 -4х-(а-1)(а-5)=0, больше чем 1.

    Ответ: 2<а<4

    Корни квадратного уравнения х 2 +(а+1)х-2а(а-1)=0, меньше чем 1.

    Ответ:

    -0,5<а<2

    Корни квадратного уравнения х 2 -2ах+а=0, принадлежат интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    Только меньший корень уравнения х 2 -2ах+а=0, принадлежит интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Только больший корень уравнения х 2 +4х-(а+1)(а+5)=0, принадлежит промежутку [-1;0).

    Ответ:(-5;-4]U[-2;-1)

    Отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0.

    Ответ:-1 <а<3

    Корни квадратного уравнения х 2 -2(а+1)х+4-а=0, лежат по разные стороны от числа 3.

    Ответ( 10 / 7 ;∞)

    Спасибо за урок ребята!

Самым мощным инструментом при решении сложных задач с параметрами является теорема Виета. Но здесь нужно быть предельно внимательным к формулировке.

Этих двух теорем (прямой и обратной)

Теорема Виета

Если уравнение имеет корни и ; то выполнены равенства .

Особенности теоремы:

Первое . Теорема верна только для уравнения и не верна для

В последнем случае нужно сначала разделить обе части уравнения на ненулевой коэффициент а при х 2 , а потом уже применять теорему Виета.

Второе. Для использования результатов теоремы необходимо иметь факт существования корней уравнений т.е. не забывать наложить условие D>0

Обратная

Теорема Виета

Если есть произвольные числа и то они являются корнями уравнения

Очень важное замечание , облегчающее решение задач: обратная теорема гарантирует существование корней в уравнении что позволяет не возится с дискриминантом. Он автоматически в этом случае неотрицателен.

Условия на корни Равносильное условие на коэффициенты а,в,с, и дискриминант D
Корни существуют (и различны)
Корни существуют и равны Причем
Корни существуют и
Корни существуют и
Корни существуют и различны
Корни существуют, один корень равен нулю, а другой >0

1). Установить, при каких значениях параметра уравнение

Не имеет корней.

Если уравнение не имеет корней, то необходимо и достаточно, чтобы дискриминант

имеет различные положительные корни .

Раз корни есть, то если они оба положительные, то и Воспользуемся формулой Виета, тогда для данного уравнения

Имеет различные отрицательные корни


Имеет корни разного знака

Имеет совпадающие корни

2). При каких значениях параметра а оба корня квадратного уравнения будут положительными?

Решение.

Так как заданное уравнение является квадратным, то оба его корня (равные или различные) будут положительными, если дискриминант неотрицателен, а сумма и произведение корней положительны, то есть



Так как, а по теореме Виета,

То получим систему неравенств

3). Найти все значения параметра а неположительны.

Так как заданное уравнение является квадратным, то . Оба его корня (равные или различные) будут отрицательными или равными нулю, если дискриминант неотрицательный, сумма корней отрицательна или равна нулю, а произведение корней неотрицательно, то есть

а по теореме Виета

то получим систему неравенств.

откуда

4).При каких значениях параметра а равна 22.5 ?

Вначале предложим “ решение “, с которым нам не раз приходилось встречаться.

поскольку то получаем “Ответ” Однако при найденном значении а исходное уравнение корней не имеет.

В этом решении мы столкнулись с одной из “популярнейших” ошибок, связанной с применением теоремы Виета:

вести речь о корнях предварительно не выяснив, существуют они или нет.

Так, в данном примере, в первую очередь необходимо было установить, что лишь при исходное уравнение имеет корни. Только после этого можно обратится к выкладкам, приведенным выше.

Ответ: Таких а не существует.

5). Корни уравнения таковы, что Определить

Решение. По теореме Виета Возведем обе части первого равенства в квадрат Учитывая, что а получаем или Проверка показывает, что значения удовлетворяют исходному уравнению.

Ответ :

6).При каком значении параметра а сумма квадратов корней уравнения принимает наименьшее значение:

Найдем дискриминант данного уравнения. Имеем Здесь важно не сделать ошибочный вывод о том, что уравнение имеет два корня при любом а . оно действительно имеет два корня при любом, но допустимом а , т.е. при при

Используя теорему Виета, запишем

Таким образом, для получения ответа осталось найти наименьшее значение квадратичной функции

на множестве

Поскольку при а при то функция на указанном множестве принимает наименьшее значение в точке

Задачи для самостоятельного решения

1). Найти все значения параметра а , при которых корни квадратного уравнения

неотрицательны

2). Вычислить значение выражения ,где -корни уравнения

3). Найти все значения параметра а , при которых сумма квадратов действительных корней уравнения больше 6.

Ответ:

4).При каких значениях параметра а уравнение ах 2 -4х+а=0 имеет:

а) положительные корни

б) отрицательные корни

Расположение корней квадратичной функции относительно

заданных точек.

Для подобных задач характерна следующая формулировка: при каких значениях параметра корни (только один корень) больше (меньше, не больше, не меньше) заданного числа А; корни расположены между числами А и В; корни не принадлежат промежутку с концами в точках А и В и т.п.

При решении задач, связанных с квадратным трехчленом

часто приходится иметь дело со следующими стандартными ситуациями (которые мы сформулируем в виде «вопрос – ответ».

Вопрос 1 . Пусть дано число (1) оба его корня и больше т.е. ?

Ответ . Коэффициенты квадратного трехчлена (7) должны удовлетворять условиям

где - абсцисса вершины параболы .

Справедливость сказанного вытекает из рис. 1, на котором отдельно представлены случаи и Отметим, что двух условий и еще недостаточно, чтобы корни и были больше На первом из рис. 1 штрихом изображена парабола, удовлетворяющая этим двум условиям, но ее корни меньше Однако, если к указанным двум условиям добавить, что абсцисса вершины параболы больше то и корни будут большими чем

Вопрос 2 . Пусть дано число При каких условиях на коэффициенты квадратного трехчлена (1) его корни и лежат на разные стороны от т.е. ?

Ответ. коэффициенты квадратного трехчлена (1) должны удовлетворять условию

Справедливость сказанного вытекает из рис. 2, на котором отдельно представлены случаи и Отметим, что указанное условие гарантирует существование двух различных корней и квадратного трехчлена (1).

Вопрос 3 . При каких условиях на коэффициенты квадратного трехчлена (1) его корни и различны и только один из них лежит в заданном интервале

Ответ. Коэффициенты квадратного трехчлена (1) должны удовлетворять условию

Вопрос 4. При каких условиях на коэффициенты квадратного трехчлена (1) множество его корней не пусто и все его корни и лежат в заданном интервале т.е.


Ответ . Коэффициенты квадратного трехчлена (1) должны удовлетворять условиям

Для решения таких задач полезно работать с таблицей, которая приведена ниже.

Корни многочлена


.



При каком значении параметра a один корень уравнения

больше 1, а другой меньше 1?

Рассмотрим функцию -


Цель работы:

  • Исследование всевозможных особенностей расположения корней квадратного трехчлена относительно заданной точки и относительно заданного отрезка на основе свойств квадратичной функции и графических интерпретаций.
  • Применение изученных свойств при решении нестандартных задач с параметром.

Задачи:

  • Изучить различные приемы решения задач на основе исследования расположения корней квадратного трехчлена графическим методом.
  • Обосновать всевозможные особенности расположения корней квадратного трехчлена, разработать теоретические рекомендации для решения нестандартных задач с параметром.
  • Овладеть рядом технических и интеллектуальных математических умений, научится их использовать при решении задач.

Гипотеза:

Использование графического метода в нетрадиционных задачах с параметром упрощает математические выкладки и является рациональным способом решения.


тогда и только тогда:

1. Оба корня меньше числа А,

2. Корни лежат по разные стороны от числа А,

тогда и только тогда:

  • тогда и только тогда:

тогда и только тогда:

3. Оба корня больше числа А, то есть


Найти все значения параметра а, для которых один корень уравнения

больше 1, а другой меньше 1.


При каких значениях параметра уравнение

имеет два различных корня одного знака?

-6

-2

3

a


1. Оба корня лежат между точками A и B , то есть

тогда и только тогда:

2. Корни лежат по разные стороны от отрезка

тогда и только тогда:

3. Один корень лежит вне отрезка, а другой на нем, то есть

тогда и только тогда:


Исследуйте уравнение

на количество корней в зависимости от параметра.

уравнение не имеет решений.

имеет одно решение.


Исследуйте уравнение

на количество корней в

зависимости от параметра.


Если один корень лежит на отрезке, а другой слева от него.

Если один корень лежит на отрезке, а другой справа от него.

первоначальное уравнение будет иметь два различных корня.

при которых

уравнение имеет три различных корня.

Ответ: при

при которых

первоначальное уравнение будет иметь два

различных корня.

уравнение имеет четыре различных корня.

Уравнения содержащие параметр.
Урок 2: Расположение корней квадратного уравнения в зависимости
от параметра.
Цель: Формировать умение распознавать положение параболы в
зависимости от ее коэффициентов.
I.
Объяснение нового материала.
Ход урока
Решение многих задач с параметрами, предлагаемых на экзаменах, в
частности, на ЕГЭ по математике, требует умения правильно
формулировать необходимые и достаточные условия, соответствующие
различным случаям расположения корней квадратного трёхчлена на
числовой оси.
Рассмотрим пример: найдите все значения параметра с, при которых оба

меньше, чем – 1.
1
2). Теперь нужно
Уравнение имеет два различных корня при D > 0 (с >
составить систему уравнений когда х1>−1 и х2>−1 . Ее будет
достаточно сложно решить.
Для решения заданий такого типа существует специальный метод.
Сначала рассмотрим квадратичную функцию f(x) = ax2+bx+c,a≠0.
Запишем ее в виде f(x)=a(x+ b
2a)
Вспомним основные характеристики параболы, позволяющие построить ее
график. При решении заданий с параметрами эти характеристики
применяются в другом контексте.
+ 4ac−b2
4a
2
.
1. Прямая x=−b
2a – ось параболы, которая является одновременно
осью ее симметрии. Вершиной параболы является точка (
−b
2a
;4ac−b2
4a).
2. Знак числа а показывает, куда направлены ветви параболы: если а >
0, то вверх, если а < 0, то вниз.

3. Дискриминант D=b2−4ac показывает, пересекается ли парабола с
осью абсцисс.
Объединим вышесказанное в таблице:
Расположение графика по отношению к оси абсцисс в зависимости от
знаков коэффициента а и дискриминанта.
а > 0
а < 0
D > 0
D = 0
D < 0
Утверждение 1: Оба корня меньше числа А, то есть х1 < А и х2 < А тогда
и только тогда, когда { D>0,
a>0,
x0f(A)>0
или { D>0,
a<0,
x0f(A)<0.
Утверждение 2: Корни лежат по разные стороны от числа А, то есть х1 <
А < х2 , тогда и только тогда, когда { a>0,
системы можно заменить формулой a⋅f(A)<0.
f(A)<0 или { a<0,
f(A)>0.
Эти две
Утверждение 3: Оба корня больше числа А, то есть х1 > А и х2 > А, тогда
и только тогда, когда { D>0,
a>0,
x0>A,
f(A)>0
или { D>0,
a<0,
x0>A,
f(A)<0.

Утверждение 4: Оба корня лежат между точками А и В, то есть А < х1 <
a<0,
А<х0<В,
f(A)<0,
f(В)<0.
a>0,
А<х0<В,
f(A)>0,
f(В)>0
В и А < х2 < В, тогда и только тогда, когда { D>0,
> х2 и А < х1 < В, тогда и только тогда, когда { a>0,
> х2 и А < х2 < В, тогда и только тогда, когда { a>0,
или { D>0,
f(В)>0 или { a<0,
или { a<0,
f(A)>0,
f(В)<0
f(A)>0,
f(В)<0.
f(A)<0,
f(В)>0.
f(A)<0,
Утверждение 5: Больший корень лежит между точками А и В, то есть х1
Утверждение 6: Меньший корень лежит между точками А и В, то есть х1
Утверждение 7: Корни лежат по разные стороны от отрезка
есть х1 < А < В < х2, тогда и только тогда, когда { a>0,
f(A)<0,
f(В)<0
или { a<0,
f(A)>0,
f(В)>0.
[А;В]
, то
Вернемся к примеру1: найдите все значения параметра с, при которых оба
корня квадратного уравнения х2+4сх+(1−2с+4с2)=0 различны и
меньше, чем – 1. (Для решения необходимо воспользоваться утверждением
1.)
Пример 2: При каких действительных значениях k оба корня (в том числе
кратных) уравнения (1 + k)х2 – 3kх + 4k = 0 больше 1? (Для решения
необходимо воспользоваться утверждением 3.)
II. Закрепление пройденного материала. Практическая работа в
группах.
1 группа:
1. При каких значениях k число 2 находится между корнями уравнения 2х2
1
2 х + (k – 3)(k + 5) = 0?

2. При каких значениях параметра а оба корня уравнения х2 – ах + 2 = 0
лежат в интервале (0; 3)?

2 группа:
1. При каких значениях k число 3 находится между корнями уравнения х2
+
х + (k – 1)(k + 7) = 0?
2. Существуют ли такие значения параметра а, что корни уравнения х2 +
2х + а = 0 лежат между – 1 и 1?
3 группа:
1. Найдите множество значений параметра k, при число 2 находится
между корнями уравнения 9х2 – 6х – (k – 2)(k + 2) = 3.
2. При каких значениях параметра а все решения уравнения (а – 1)х2 – (а +
1)х + а = 0 имеет единственное решение удовлетворяющее условию 0 <
x < 3?
III. Домашняя работа.
1. При каких значениях параметра а оба корня уравнения (а + 4)х2 – 2(а +
2)х + 3(а + 6) = 0 положительны?
2. При каких значениях параметра а оба корня уравнения (а – 3)х2 – 3(а –
4)х + 4а – 16 = 0 принадлежат интервалу (2; 5)?
3. При каких значениях параметра а один из корней уравнения 2ах2 – 2х –
3а – 2 = 0 больше 1, а другой меньше 1?



Загрузка...