Кошки. Породы, стерилизация

Принцип действия катодной защиты. Особенности катодной защиты трубопроводов от коррозии

Существуют различные методы обработки металлических труб, но наиболее эффективной из них является катодная защита трубопроводов от коррозии. Она необходима для предотвращения их преждевременной разгерметизации, которая повлечет за собой образование трещин, каверн и разрывов.

Коррозия металлов представляет собой естественный процесс, при котором происходит изменение атомов металла. Вследствие этого их электроны переходят к окислителям, что влечет разрушение структуры материала.

Для подземных трубопроводов дополнительным фактором коррозийного влияния является состав грунта. В нем присутствуют участки различного электродного потенциала, что является причиной образования коррозийных гальванических элементов.

Существует несколько разновидностей коррозии, среди которых:

  • Сплошная. Отличается большой сплошной площадью распространения. В редких случаях становится причиной повреждения трубопровода, так как зачастую не проникает глубоко в структуру металла;

  • Местная коррозия – становится наиболее частой причиной разрывов, так как не охватывает большую площадь, но проникает глубоко. Подразделяется на язвенную, нитевидную, сквозную, подповерхностную, пятнистую, ножевую, межкристаллитную, коррозийную хрупкость и растрескивание.

Методы защиты подземного трубопровода

Защита от коррозии металла может быть как активной, так и пассивной. Пассивные методы предполагают создание для трубопровода таких условий, в которых на него не будет влиять окружающий его грунт. Для этого на него наносятся особые защитные составы, которые становятся барьером. Чаще всего используются в виде покрытия битум, эпоксидные смолы, полимерные ленты либо каменноугольный пек.

Для активного метода чаще всего используется катодная защита трубопроводов от коррозии. Она основывается на создании поляризации, что позволяет снизить скорость растворения металла. Этот эффект реализуется за счет смещения потенциала коррозии в более отрицательную область. Для этого между поверхностью металла и грунтом проводиться электрический ток, что существенно снижает скорость коррозии.

Способы реализации катодной защиты:

  • С использованием внешних источников тока, которые соединяются с защищаемой трубой и с анодным заземлением;

  • С использованием гальванического метода (магниево-жертвенных анодов-протекторов).

Катодная защита трубопроводов от коррозии с использованием внешних источников является более сложной. Так как требует использования особых конструкций, которые обеспечивают подачу постоянного тока. Гальванический способ, в свою очередь, реализуется за счет протекторов, которые позволяют обеспечивать эффективную защиту только в грунтах с низким электрическим сопротивлением.

Может использоваться для защиты трубопровода и анодный метод. Он используется в условиях контакта с агрессивной химической средой. Анодный метод основывается на переводе активного состояния металла в пассивное и его поддержания за счет влияния внешнего анода.

Несмотря на определенные сложности в реализации, данный метод активно используется там, где катодная защита трубопроводов от коррозии не может быть реализована.

Примеры катодной защиты трубопроводов от коррозии на выставке

Опыт использования и новые разработки в данной сфере освещаются на ежегодной отраслевой выставке «Нефтегаз», которая проходит в ЦВК «Экспоцентр».

Выставка является крупным событием индустрии и отличной площадкой для ознакомления специалистов с новыми разработками, а также запуска новых проектов. Выставка «Нефтегаз» будет проходить в ЦВК «Экспоцентр» в Москве на Красной Пресне.

Читайте другие наши статьи.

М. Иванов, к. х. н.

Коррозия металлов, особенно железа и нелегированной стали, наносит большой вред аппаратам и трубопроводам, эксплуатируемым в условиях контакта с водой и воздухом. Это приводит к снижению сроков службы оборудования и дополнительно создает условия для загрязнения воды продуктами коррозии.

Подписаться на статьи можно на

Как известно, коррозия является электрохимическим процессом, при котором происходит окисление металла, то есть отдача его атомами электронов. Этот процесс осуществляется в микроскопической части поверхности, называемой анодной областью. Он приводит к нарушению целостности металла, атомы которого вступают в химические реакции, особенно активно - в присутствии кислорода воздуха и влаги.

Поскольку металлы хорошо проводят электрический ток, высвобожденные электроны свободно перетекают в другую микроскопическую область, где в присутствии воды и кислорода происходят восстановительные реакции. Такую область называют катодной.

Протеканию электрохимической коррозии можно противодействовать, произведя за счет приложения напряжения от внешнего источника постоянного тока сдвиг электродного потенциала металла до значений, при которых процесс коррозии не происходит.

На основе этого построены системы катодной защиты подземных трубопроводов, резервуаров и других металлических сооружений. В случае приложения к защищаемому металлу электрического потенциала на всей поверхности металлической конструкции устанавливаются такие значения потенциала, при которых могут протекать только восстановительные катодные процессы: например, катионы металла будут принимать электроны и превращаться в ионы более низкой степени окисления или нейтральные атомы.

Технически метод катодной защиты металлов осуществляется следующим образом (рис. 1 ). К защищаемой металлической конструкции, например стальному трубопроводу, подводится провод, который соединяют с отрицательным полюсом катодной станции, в результате этого трубопровод становится катодом. На некотором расстоянии от металлической конструкции в грунте располагается электрод, который с помощью провода соединяется с положительным полюсом и становится анодом. Разность потенциалов между катодом и анодом создают таким образом, чтобы полностью исключить протекание окислительных процессов на защищаемой конструкции. В этом случае через влажную почву между катодом и анодом в толще грунта будут протекать слабые токи. Для эффективной защиты требуется размещение нескольких анодных электродов по всей длине трубопровода. Если удается снизить разность потенциалов защищаемой конструкции и грунта до 0,85-1,2 В, то скорость протекания коррозии трубопровода уменьшается до существенно малых значений.

Итак, система катодной защиты включает в себя источник постоянного электрического тока, контрольно-измерительный пункт и анодное заземление. Обычно станция катодной защиты состоит из трансформатора переменного тока и диодного выпрямителя. Как правило, ее питание осуществляется от сети напряжением 220 В; существуют также станции, питаемые от линий высокого (6-10 кВ) напряжения.

Для эффективной работы катодной станции создаваемая ею разность потенциалов катода и анода должна быть не менее 0,75 В. В некоторых случаях для успешной защиты достаточно порядка 0,3 В. В то же время в качестве технических параметров станций катодной защиты используются величины номинальных значений выходного тока и выходного напряжения. Так, обычно номинальное выходное напряжение станций составляет от 20 до 48 В. При большом расстоянии между анодом и защищаемым объектом требуемое значение выходного напряжения станции достигает 200 В.

В качестве анодов применяют вспомогательные инертные электроды. Анодные заземлители, например модели АЗМ-3Х производства ЗАО «Катодъ» (пос. Развилка, Московская обл.), представляют собой отливки из коррозионно-стойкого сплава, снабженные специальным проводом с медной жилой в усиленной изоляции, а также герметизированной муфтой для присоединения к магистральному кабелю станции катодной защиты. Рациональнее всего использовать заземлители в средах высокой и средней коррозийной активности при удельном сопротивлении грунта до 100 Ом.м. Для оптимального распределения напряженности поля и плотности тока по корпусу оборудования вокруг анодов располагают специальные экраны в виде засыпки из угля или кокса.

Для оценки эффективности работы станции катодной защиты необходима система, которая состоит из измерительного электрода и электрода сравнения и является основной частью контрольно-измерительного пункта. На основании показаний данных электродов производится регулирование разности потенциалов катодной защиты.

Измерительные электроды изготавливают из высоколегированной стали, кремнистого чугуна, платинированной латуни или бронзы, а также меди. Электроды сравнения - хлорсеребряные или сульфатно-медные. По своему конструктивному исполнению электроды сравнения могут быть погружными или выносными. Состав раствора, используемого в них, должен быть близким к составу среды, от вредного воздействия которой требуется защитить оборудование.

Можно отметить биметаллические электроды сравнения длительного действия типа ЭДБ, разработанные ВНИИГАЗом (Москва). Они предназначены для измерения разности потенциалов между подземным металлическим объектом (включая трубопровод) и землей для управления станцией катодной защиты в автоматическом режиме в условиях большой нагрузки и на значительной глубине, то есть там, где другие электроды не могут обеспечить постоянное поддержание заданного потенциала.

Оборудования для катодной защиты поставляется, в основном, отечественными производителями. Так, упомянутое ЗАО «Катодъ» предлагает станцию «Минерва-3000» (рис. 2 ), предназначенную для защиты магистральных водопроводных сетей. Ее номинальная выходную мощность - 3,0 кВт, выходное напряжение - 96 В, сила тока защиты - 30 А. Точность поддержания защитного потенциала и величины тока соответственно составляет 1 и 2 %. Величина пульсации - не более 1 %.

Другой российский производитель - ОАО «Энергомера» (Ставрополь) - поставляет модули марок МКЗ-М12, ПНКЗ-ППЧ-М10 и ПН-ОПЕ-М11, обеспечивающие эффективную катодную защиту подземных металлических сооружений в зонах высокой коррозионной опасности. Модуль МКЗ-М12 имеет номинальный ток 15 или 20 А; номинальное выходное напряжение - 24 В. Для моделей МКЗ-М12-15-24-У2 выходное напряжение составляет 30 В. Точность поддержания защитного потенциала достигает ±0,5 %, заданного тока ±1 %. Технический ресурс - 100 тыс. ч, а срок службы - не менее 20 лет.

ООО «Электронные технологии» (Тверь) предлагает станции катодной защиты «Тверца» (рис. 3 ), комплектуемые встроенным микропроцессором и телемеханической системой дистанционного управления. Контрольно-измерительные пункты оборудованы неполяризующимися электродами сравнения длительного действия с датчиками электрохимического потенциала, обеспечивающими измерение поляризационных потенциалов на трубопроводе. В состав этих станций включены также регулируемый источник катодного тока и блок датчиков электрических параметров цепи, который через контроллер соединен с устройством дистанционного доступа. Трансформатор данной станции выполнен на основе ферритовых сердечников типа Epcos. Используется также система управления преобразователем напряжения на основе микросхемы типа UCC 2808A.

Компания «Курс-ОП» (Москва) выпускает станции катодной защиты «Элкон», напряжение на выходе которых изменяется в диапазоне от 30 до 96 В, а выходной ток - в диапазоне от 20 до 60 А. Пульсации выходного напряжения - не более 2 %. Эти станции предназначены для защиты от почвенной коррозии однониточных, а с применением блока совместной защиты и многониточных трубопроводов в зонах отсутствия блуждающих токов в условиях умеренного климата (от -45 до +40 °С). В состав станций входят однофазный силовой трансформатор, преобразователь со ступенчатым регулированием выходного напряжения, высоковольтная аппаратура, двухполюсный разъединитель с ручным приводом и ограничители перенапряжений.

Можно также отметить установки катодной защиты серии НГК-ИПКЗ производства ООО «НПФ «Нефтегазкомплекс ЭХЗ» (Саратов), максимальный ток на выходе из которых составляет 20 или 100 А, а номинальное выходное напряжение - 48 В.

Один из поставщиков станций катодной защиты из стран СНГ - фирма «Гофман Электрик Технолоджис» (Харьков, Украина), предлагающая оборудование для электрохимической защиты от почвенной коррозии магистральных трубопроводов.

СКЗ – основные сведения.

Станция катодной защиты (СКЗ) – это комплекс сооружений, предназначенных для катодной поляризации газопровода внешним током.

Основными конструктивными элементами СКЗ (рис. 12.4.1.) являются:

Ø источник постоянного (выпрямленного) тока (катодная станция) 5 ;

Ø анодное заземление 2 , зарываемое в землю на некотором расстоянии от трубопровода 1 ;

Ø соединительные электролинии 3 , соединяющие положительный полюс источника тока с анодным заземлением, а отрицательный полюс - с трубопроводом;

Ø катодный вывод газопровода 8 и точка дренажа 7 ;

Ø защитное заземление 4 .

Рисунок – 12.4.1. - Принципиально-конструктивная схема СКЗ

Потенциал трубопровода под действием входящего тока становится более электроотрицательным, оголенные участки газопровода (в местах повреждения изоляции) катодно заполяризовываются и в зависимости от величины установившегося потенциала становится полностью или частично защищенными от коррозии. Одновременно на анодном заземлении под действием стекающего тока происходит процесс анодной поляризации, сопровождающийся постепенным разрушением анодного заземления.

Источники постоянного тока СКЗ разделяются на две группы. К первой группе относятся сетевые преобразующие устройства - выпрямители, питаемые от линий электропередачи (ЛЭП) переменного тока промышленной частоты 50 Гц номинальным напряжением от 0,23 до 10 кВ. Ко второй группе относятся автономные источники – генераторы постоянного тока и электрохимические элементы, которые вырабатывают электроэнергию непосредственно на трассе газопровода вблизи места, где необходимо установить СКЗ (ветроэлектрогенераторы, электрогенераторы с приводом от газовых турбинок, от двигателя внутреннего сгорания, термоэлектрогенераторы, аккумуляторы).

На магистральных газопроводах широкое распространение получили сетевые катодные станции с выпрямителями однофазного переменного тока напряжением 127/220 В, частотой 50 Гц. При наличии линий электропередачи переменного тока с номинальным напряжением 0,23; 0,4; 6 и 10 кВ применение таких станций целесообразно и экономически оправдано. При питании от ЛЭП 6 или 10 кВ выпрямительную установку подключают к питающей линии через понижающий трансформатор.

Рисунок – 12.4.2. – Упрощенная принципиальная схема типового неавтоматического источника питания СКЗ

На рис.12.4.2. приведена упрощенная типовая схема сетевой катодной станции с выпрямителем. Сеть переменного тока подключается к клеммам 1 и 2 . Учет потребляемой электроэнергии осуществляется электросчетчиком 3 . Автомат 4 служит для включения установки, а предохранители 5 обеспечивают защиту от токов короткого замыкания и перегрузок со стороны переменного тока. Понижающий трансформатор 6 питает выпрямитель 7 , собранный из отдельных выпрямительных элементов по двухполупериодной мостовой схеме выпрямления или по двухполупериодной однофазной схеме выпрямления с нулевым выводом. Защита от короткого замыкания и перегрузки со стороны цепи выпрямленного тока обеспечивается предохранителем 9 . Режим работы установки контролируют при помощи амперметра 10 и вольтметра 12 . Соединительный кабель от трубопровода 11 подключается к клемме «-», а от анодного заземления - к клемме «+». Все элементы установки смонтированы в металлическом шкафу, запираемом на замок.

Для обеспечения безопасных условий эксплуатации все металлические части конструкции станции заземляются защитным заземлением 8 .

Выпрямительные установки имеют устройства для регулирования напряжения или силы тока. В большинстве установок применяют ступенчатое регулирование напряжения путем переключения отдельных секций обмоток трансформатора. На некоторых типах выпрямителей напряжение регулируется плавно при помощи автотрансформатора или магнитных шунтов в обмотках трансформатора. Применяют также симисторное регулирование напряжения в первичной обмотке и тиристорное – во вторичной.

При катодной защите газопроводов, находящихся в зоне действия блуждающих токов, режим работы неавтоматических выпрямителей переменного тока обычно выбирается с учетом среднего значения разности потенциала «труба – земля», которое определяется по данным измерений за определенный промежуток времени (обычно среднесуточное значение) и не исключает выбросов потенциала в анодную или катодную область. Для подавления анодных выбросов выпрямитель необходимо настраивать на режим перезащиты. Глубокая катодная поляризация приводит к перерасходу электроэнергии, отслаиванию и растрескиванию изоляционного покрытия, наводораживанию поверхности металла (за счет интенсивного выделения на катоде водорода). Такой характер изменения потенциалов газопроводов приводит к необходимости создания автоматических станций катодной защиты, которые должны поддерживать потенциал в защитном диапазоне при минимальном расходе электроэнергии и максимальном использовании защитных свойств блуждающих токов. СКЗ состоят из устройств для установки заданного значения разности потенциалов (задающих устройств), устройств для измерения фактической разности потенциалов (измерительных устройств со стационарными электродами сравнения), усилителей мощности, исполнительных органов, изменяющих силу тока в цепи СКЗ.

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило ~ 220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • 0 Рубрика: . Вы можете добавить в закладки.

Пассивная защита подземных газопроводов изолиру-ющими покрытиями дополняется электрической защитой. Задачи электрической защиты следующие.

  1. Отвод блуждающих электрических токов с защищаемого газо-провода и организованный возврат их к электрическим установкам и сетям постоянного тока, являющимся источником этих токов.
  2. Подавление протекающих по газопроводу токов в местах их вы-хода в землю (анодные зоны) токами от внешнего источника, а также токов, возникающих за счет почвенной электрохимической коррозии, созданием гальванической цепи и защитного электрического потен-циала на трубах газопровода.
  3. Предотвращение распространения электрических токов по газопроводам путем секционирования последних изолирующими фланцами.

Задача отвода блуждающих токов может быть решена путем создания:

  1. дополнительных заземлений для отвода токов в землю. Недо-статок — возможность вредного влияния на соседние трубопроводы токов, стекающих с защищаемого газопровода;
  2. простой или прямой дренажной защиты, т.е. электрического соединения защищаемого газопровода с рельсами трамвая или элек-трической железной дороги с целью возврата через них токов к их источнику. Простой дренаж имеет двустороннюю проводимость, т.е. может пропускать ток туда и обратно, и поэтому применяется в устойчивых анодных зонах. Недостатком этой защиты является не-обходимость выключения дренажа, если изменилась полярность тока или если потенциал на газопроводе стал меньшим, чем на рельсах;
  3. поляризованной дренажной защиты, т.е. дренажа с односто-ронней проводимостью, исключающей обратное течение тока от рельсов к защищаемому газопроводу;
  4. усиленной дренажной защиты, т.е. такой защиты, в цепь кото-рой для повышения эффективности включен внешний источник тока. Таким образом, усиленный дренаж — это объединение поля-ризованного дренажа с катодной защитой.

Задача подавления токов, протекающих по защищаемому газо-проводу, может быть решена с помощью:

  1. Катодной защиты внешним током (электрозащита), т.е. при-соединением защищаемого газопровода к внешнему источнику тока — к его отрицательному полюсу в качестве катода. Положитель-ный полюс источника тока присоединяется к заземлению — аноду. Создается замкнутая цепь, в которой ток течет от анода через землю к защищаемому газопроводу и далее к отрицательному полюсу внешнего источника тока. При этом происходит постепенное разрушение анодных зазем-лений, но обеспечивается защита газопровода за счет его катодной поляризации и предотвращения стекания токов с труб в землю. В ка-честве внешнего источника могут применяться станции катодной защиты(СКЗ);
  2. Протекторной защиты, т.е. защиты путем использования в электрической цепи протекторов из металлов, обладающих в кор-розионной среде более отрицательным потенциалом, чем металл трубопровода. Электрический ток возникает в системе протекторной защиты, так же как в гальваническом элементе, причем электроли-том служит грунт, содержащий влагу, а электродами являются газопровод и металл протектора. Возникающий защитный ток подавля-ет токи электрохимической коррозии и обеспечивает создание за-щитного электрического потенциала на газопроводе.

Принципиальная схема катодной защиты подземного газопровода

1 — анодное заземление; 2,4 — дренажные кабели; 3 — внешний источник электри-ческого тока; 5 — точка при-соединения дренажного кабеля; 6 — защищаемый газопровод

Принципиальная схема протекторной защиты подземного газопровода

1 — защищаемый газопровод; 2 — изолированные кабели; 3 — контрольный вывод; 4 — протектор; 5 — заполнитель для протектора

Задача электрического секционирования трубопроводов решается установкой изолирующих фланцев с паронитовыми или текстолито-выми прокладками, текстолитовыми втулками и шайбами. Пример конструкции изолирующих фланцев представлен на рисунке ниже.

Устройство изолирующих фланцев

1— изолирующая текстолитовая или паронитовая втулка; 2— изолирующая шайба из текстолита, резины или хлорвинила; 3 — стальная шайба; 4 — свинцовые шайбы; 5— текстолитовое кольцо-прокладка

Основными факторами, характеризующими степень коррозион-ного воздействия на подземные стальные газопроводы, являются:

  • величина и направление блуждающих токов в грунте;
  • величина и полярность потенциала газопровода относительно других металлических подземных коммуникаций и рельсов электри-фицированного транспорта;
  • направление и сила токов, протекающих по газопроводу;
  • состояние противокоррозионной защиты газопроводов;
  • величина удельного электрического сопротивления фунта.

Все эти факторы подлежат периодическому контролю.

Периодичность элекфических измерений такова:

  • в районах установок электрозащиты газопроводов и других за-щищаемых сооружений, а также около тяговых подстанций и депо элекфотранспорта, вблизи рельсов фамвая и элекфифицированных железных дорог и в местах пересечений газопроводов с ними — не реже одного раза в 3 месяца, а также при изменениях режимов уста-новок электрозащиты, защищаемых сооружений или источников блуждающих токов;
  • в неопасных с точки зрения электрозащиты участках — не реже одного раза в год в летнее время, а также при всяких изменениях ус-ловий, могущих вызвать электрокоррозию.

Для протекторной защиты применяют протекторы из цветных металлов — обычно магния, цинка, алюминия и их сплавов.

Контроль работы электрозащитных установок и измерение по-тенциалов на контактах производятся (не реже): на дренажных уста-новках — 4 раза в месяц; на катодных установках — 2 раза в месяц; на протекторных установках — 1 раз в месяц.



Загрузка...