Кошки. Породы, стерилизация

Временные допустимые уровни (вду) ослабления геомагнитного поля (гмп). Излучение от телефона

Нормирование радиочастотного диапазона (РЧ-диапазона ) осуществляется в соответствии с ГОСТ 12.1.006-84*. Для частотного диапазона 30 кГц...300 МГц предельно допустимые уровни излучения определяются по энергетической нагрузке, создаваемой электрическим и магнитным полями

где Т - время воздействия излучения в часах.

Предельно допустимая энергетическая нагрузка зависит от частотного диапазона и представлена в табл. 1.

Таблица 1. Предельно допустимая энергетическая нагрузка

Диапазоны частот*

Предельно допустимая энергетическая нагрузка

30 кГц...З МГц

Не разработаны

Не разработаны

*Каждый диапазон исключает нижний и включает верхний пределы частот.

Максимальное значение для ЭН E составляет 20 000 В 2 . ч/м 2 , для ЭН H — 200 А 2 . ч/м 2 . Используя указанные формулы, можно определить допустимые напряженности электрического и магнитного полей и допустимое время воздействия облучения:

Для частотного диапазона 300 МГц...300 ГГц при непрерывном облучении допустимая ППЭ зависит от времени облучения и определяется по формуле

где Т - время воздействия в часах.

Для излучающих антенн, работающих в режиме кругового обзора, и локального облучения кистей рук при работе с микроволновыми СВЧ-устройствами предельно допустимые уровни определяются по формуле

где к = 10 для антенн кругового обзора и 12,5 — для локального облучения кистей рук, при этом независимо от продолжительности воздействия ППЭ не должна превышать 10 Вт/м 2 , а на кистях рук — 50 Вт/м 2 .

Несмотря на многолетние исследования, сегодня ученым еще далеко не все известно о на здоровье человека. Поэтому лучше ограничивать облучение ЭМИ, даже если их уровни не превышают установленные нормативы.

При одновременном воздействии на человека различных РЧ-диапазонов должно выполняться условие

где E i , H i , ППЭ i — соответственно реально действующие на человека напряженность электрического и магнитного поля, плотность потока энергии ЭМИ; ПДУ Ei ., ПДУ Hi , ПДУ ППЭi . — предельно допустимые уровни для соответствующих диапазонов частот.

Нормирование промышленной частоты (50 Гц) в рабочей зоне осуществляется по ГОСТ 12.1.002-84 и СанПиН 2.2.4.1191-03. Расчеты показывают, что в любой точке электромагнитного поля, возникающего в электроустановках промышленной частоты, напряженность магнитного поля существенно меньше напряженности электрического поля. Так, напряженность магнитного поля в рабочих зонах распределительных устройств и линий электропередач напряжением до 750 кВ не превышает 20-25 А/м. Вредное же действие магнитного поля (МП) на человека установлено лишь при напряженности поля свыше 80 А/м. (для периодических МП) и 8 кА/м (для остальных). Поэтому для большинства электромагнитных полей промышленной частоты вредное действие обусловлено электрическим полем. Для ЭМП промышленной частоты (50 Гц) установлены предельно допустимые уровни напряженности электрического поля.

Допустимое время пребывания персонала, обслуживающего установки промышленной частоты определяется по формуле

где Т — допустимое время нахождения в зоне с напряженностью электрического поля Е в часах; Е — напряженность электрического поля в кВ/м.

Из формулы видно, что при напряженности 25 кВ/м пребывание в зоне недопустимо без применения индивидуальных средств защиты человека, при напряженности 5 кВ/м и менее допустимо нахождение человека в течение всей 8-часовой рабочей смены.

При нахождении персонала в течение рабочего дня в зонах с различной напряженностью допустимое время пребывания человека можно определить по формуле

где t Е1 , t Е2 , ... t Еn - время пребывания в контролируемых зонах соответственно напряженностью — допустимое время пребывания в зонах соответствующей напряженности, рассчитанное по формуле (каждое значение не должно превышать 8 ч).

Для ряда электроустановок промышленной частоты, например, генераторов, силовых трансформаторов, могут создаваться синусоидальные МП с частотой 50 Гц, которые вызывают функциональные изменения иммунной, нервной и сердечно сосудистой систем.

Для переменных МП в соответствии с СанПиН 2.2.4.1191-03 устанавливаются предельно допустимые значения напряженности Н магнитного поля или магнитной индукции В в зависимости от длительности пребывания человека в зоне МП (табл. 2).

Магнитная индукция В связана с напряженностью Н соотношением:

где μ 0 = 4 * 10 -7 Гн/м — магнитная постоянная. Поэтому 1 А/м ≈ 1,25 мкТл (Гн — генри, мкТл — микротесла, которая равна 10 -6 тесла). Под общим воздействием понимается воздействие на все тело, под локальным — на конечности человека.

Таблица 2. Предельно допустимые уровни переменного (периодического) МП

Предельно допустимое значение напряженности электростатических полей (ЭСП) устанавливается в ГОСТ 12.1.045-84 и не должно превышать 60 кВ/м при действии в течение 1 ч. При напряженности ЭСП менее 20 кВ/м время пребывания в поле не регламентируется.

Напряженность магнитного поля (МП) в соответствии с СанПиН 2.2.4.1191-03 на рабочем месте не должна превышать 8 кА/м (за исключением периодических МП).

Нормирование инфракрасного (теплового) излучения (ИК-излучения) осушсствлястся по интенсивности допустимых суммарных потоков излучения с учетом длины волны, размера облучаемой площади, защитных свойств спецодежды в соответствии с ГОСТ 12.1.005-88* и СанПиН 2.2.4.548-96.

Гигиеническое нормирование ультрафиолетового излучения (УФИ) в производственных помещениях осуществляется по СН 4557-88, в которых установлены допустимые плотности потока излучения в зависимости от длины волны при условии зашиты органов зрения и кожи.

Гигиеническое нормирование лазерного излучения (ЛИ) осуществляется по СанПиН 5804-91. Нормируемыми параметрами являются энергетическая экспозиция (H, Дж/см 2 — отношение энергии излучения, падающей на рассматриваемый участок поверхности, к площади этого участка, т. е. плотность потока энергии). Значения предельно допустимых уровней различаются в зависимости от длины волны ЛИ, длительности одиночного импульса, частоты следования импульсов излучения, длительности воздействия. Установлены различные уровни для глаз (роговицы и сетчатки) и кожи.

II. Литературный обзор

Магнитное поле - это особая форма материи, которая порождается движущимися заряженными частицами, то есть электрическим током .

Геомагнитное поле земли - это область пространства, где проявляются магнитные силы Земли, созданы макроскопическими немолекулярными токами. Аномальные значения на северном и южном полюсе земли. Оно обладает напряжённостью и оказывает влияние на все живые организмы и процессы, происходящие в них. Оно оказывает воздействие на человека как благоприятное, так и неблагоприятное. Это природное магнитное поле. Но существуют электромагнитные поля, которые излучаются разнообразной электротехникой (компьютеры, телевизоры, холодильники, СВЧ - печи, телефоны и другие) .

Электромагнитное излучение - это электромагнитные волны, возбуждаемые различными излучающими объектами, заряженными частицами, атомами, молекулами, антеннами и пр. В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания. Несмотря на явные различия, все названные виды излучений – в сущности, разные стороны одного явления .

Источники электромагнитного излучения

Основные источники энергии ЭМ полей - это трансформаторы ЛЭП, расположенные вблизи мест обитания человека, телевизоры, компьютеры, разнообразные электроприборы бытового и производственного назначения, антенные устройства радио-, телевизионных и радиолокационных станций, работающих в широком диапазоне частот, и другие электроустановки. Электромагнитная энергия, излучаемая передающими радиотехническими объектами и высоковольтными ЛЭП, проникает в жилые и общественные здания. Несмотря на то, что ЭМ поле радиочастот относится к 5

мало интенсивным факторам, оно подлежит гигиеническому нормированию как фактор,

оказывающий сильное влияние на генофонд и здоровье человека. Но основным источником электромагнитного «загрязнения» на кухне, имеющим высокие, ультравысокие, и сверхвысокие частоты, являются СВЧ – печи, которые в силу самого принципа своей работы, не могут не излучать ЭМП. В принципе, их конструкция должна обеспечивать соответствующую защиту (экранировку). Так вот, измерения показывают на расстоянии 30 см от дверцы печи - 8 мкТл. Хотя пища готовится относительно недолго, но лучше отойти на метр-два, где, как показывают замеры, величина плотности потока энергии ниже санитарно-гигиенических норм. Частота ручных радиотелефонов ниже, чем у СВЧ-печей. "Мобильники" создают ЭМП различной интенсивности (450, 900, 1800 МГц), что зависит от типа системы. Но проблема заключается в том, что источник излучения максимально приближен к важнейшим структурам мозга .



Установленные нормы ЭМИ

Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения. Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина – нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности. На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный" уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 – 0,3 мкТл .
В домашнем быту.
Важнейшей территорией в любой квартире является кухня. Бытовая электроплита излучает ЭМП на расстоянии 20 - 30 см от передней панели (там, где обычно стоит хозяйка) уровень, которого составляет 1-3 мкТл (в зависимости от модификации). По данным Центра электромагнитной безопасности, у обычного бытового холодильника поле небольшое (не выше 0,2 мкТл) и возникает только в радиусе 10 см от компрессора и только во время его работы. Однако у холодильников, оснащенных системой удаления обледенения ("no frost") превышение предельно допустимого уровня можно зафиксировать на расстоянии метра от дверцы. Неожиданно малыми оказались поля от мощных электрических чайников. Но все равно на расстоянии 20 см от чайника поле составляет около 0,6 мкТл. У большинства утюгов поле выше 0,2 мкТл обнаруживается на расстоянии 25 см от ручки и только в режиме нагрева. Зато поля стиральных машин оказались достаточно большими. У малогабаритной машины поле у пульта управления составляет 10 мкТл, на высоте одного метра 1 мкТл, сбоку на расстоянии 50 см - 0,7 мкТл. В утешение можно заметить, что большая стирка - не столь частое явление, да и при работе автоматической стиральной машины хозяйка может отойти в сторонку. А вот близкого общения с пылесосом надо избегать, так как возникает излучение порядка 100 мкТл. Рекорд держат электробритвы. Их поле измеряется сотнями мкТл .

Вред излучений

Электромагнитные волны различных диапазонов, в том числе и радиочастотных, существуют в природе, образуя довольно постоянный естественный фон.

Увеличение количества и рост мощности источников высокочастотных электрических токов, источников не ионизирующей радиации создает дополнительное искусственное ЭМ поле, повреждающее гены и генофонд всего живого, что оказывает неблагоприятное влияние на состояние здоровья человека. В связи с этим уже давно возникла проблема медико-биологического изучения влияния мало интенсивного ЭМ - излучения на организм человека .

Многие виды излучения организмом не ощущаются, но это совсем не значит, что они не оказывают на него никакого воздействия. Электромагнитные колебания низких частот, радиоволны и электромагнитное поле создают электрический смог. Электромагнитное излучение средней силы органами чувств не ощущается, поэтому у людей складывается мнение об их безвредности для организма. При излучении высокой мощности можно почувствовать тепло, исходящее от источника ЭМИ. Влияние электромагнитного излучения на человека выражается в функциональном изменении деятельности нервной системы (в первую очередь головного мозга), эндокринной системы, приводит

к появлению свободных радикалов и способствует повышению вязкости крови. Ухудшение памяти, болезни Паркинсона и Альцгеймера, онкологические заболевания, преждевременное старение – вот далеко не полный перечень заболеваний, вызываемых небольшим, но постоянным воздействием электронного смога на организм. Сверхмощные электромагнитные влияния способны вывести из строя приборы и электроаппаратуру.

Кроме мутагенного (повреждение структуры генома), ЭМП оказывает эпигеномное,

геномодуляторное действие, во многом объясняющее ненаследственные психосоматические заболевания, вызываемые неионизирующими излучениями. Среди разновидностей искусственных ЭМП и излучений в домах и квартирах особую опасность представляет собой излучение, создаваемое различными видеоустройствами - телевизорами, видеомагнитофонами, компьютерными экранами, разного рода мониторами

В специальной литературе указываются следующие проявления вредоносного воздействия электромагнитного излучения на организм человека:

· Генная мутация, за счет которой возрастает вероятность возникновения онкологических заболеваний;

· Нарушения нормальной электрофизиологии человеческого организма, что вызывает головные боли, бессонницу, тахикардию;

· Повреждения глаз, вызывающие различные офтальмологические заболевания, в тяжелых случаях – вплоть до полной потери зрения;

· Видоизменение сигналов, подаваемых гормонами околощитовидных желез на мембранах клеток, торможение роста костного материала у детей;

· нарушение трансмембранного потока ионов кальция, что препятствует нормальному развитию организма у детей и подростков;

· Накопительный эффект, который возникает при многократном вредоносном воздействии излучения, в конечном счете, приводит к необратимым негативным изменениям .

Биологический эффект ЭМВ в условиях длительного многолетнего воздействия

накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Особо опасными ЭМВ могут быть для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечнососудистой системы, аллергиков, людей с ослабленным иммунитетом .

  • Дозовые уровни.
  • Предельно допустимые уровни электромагнитного поля частотой 50 Гц
  • Предельно допустимые уровни электромагнитных полей диапазона частот
  • 7. Экранирование как способ защиты от эмп.
  • 8. Санитарное нормирование шума. Принципы нормирования.
  • 9. Понятие "Уровень звукового давления". Физический смысл нулевого уровня звукового давления.
  • 10. Опасность и вред производственного шума. Нормирование широкополосного и тонального шума.
  • 11. Предельный спектр шума. Различия в предельных спектрах шума для различных видов деятельности.
  • Семейство нормировочных кривых шума (пс), рекомендованных iso:
  • СанПиН 2.2.2/2.4.1340-03
  • V. Требования к уровням шума и вибрации на рабочих местах, оборудованных пэвм
  • Приложение 1 Допустимые значения уровней звукового давления в октавных полосах частот и уровня звука, создаваемого пэвм
  • 13. Звукоизоляция. Принцип снижения шума. Примеры материалов и конструкций.
  • 13. Звукопоглощение. Принцип снижения шума. Примеры материалов и конструкций.
  • Звукопоглощение
  • Принцип снижения шума
  • Примеры материалов и конструкций
  • 15. Принципы нормирования освещенности рабочего места.
  • VI. Требования к освещению на рабочих местах, оборудованных пэвм
  • 16. Естественное освещение. Общие требования. Нормируемые показатели.
  • 17. Достоинства и недостатки освещения рабочих мест люминесцентными лампами
  • 18. Пульсации светового потока ламп. Причины появления и способы защиты.
  • 19. Напряженность зрительной работы и характеризующие ее показатели. Использование при нормировании освещенности.
  • 20. Показатели, характеризующие качество освещения рабочего места.
  • 21. Способы предотвращения слепящего действия систем освещения
  • 22. Требования к освещению на рабочих местах, оборудованных пэвм
  • 23. Требования к помещениям для работы с пэвм
  • 24. Требования к организации рабочих мест пользователей пэвм
  • Предельно допустимые уровни электромагнитных полей диапазона частот

    >= 10 - 30 кГц

    1. Оценка и нормирование ЭМП осуществляется раздельно по напряженности электрического (Е), в В/м, и магнитного (Н), в А/м, полей в зависимости от времени воздействия.

    2. ПДУ напряженности электрического и магнитного поля при воздействии в течение всей смены составляет 500 В/м и 50 А/м, соответственно.

    3. ПДУ напряженности электрического и магнитного поля при продолжительности воздействия до 2-х часов за смену составляет 1000 В/м и 100 А/м, соответственно.

    Предельно допустимые уровни электромагнитных полей диапазона частот >= 30 кГц - 300 ГГц

    1. Оценка и нормирование ЭМП диапазона частот >= 30 кГц - 300 ГГц осуществляется по величине энергетической экспозиции (ЭЭ).

    2. Энергетическая экспозиция в диапазоне частот >= 30 кГц - 300 МГц рассчитывается по формулам:

    ЭЭе = Е 2 х Т, (В/м) 2 .ч,

    ЭЭн = Н 2 х Т, (А/м) 2 .ч,

    Е - напряженность электрического поля (В/м),

    Н - напряженность магнитного поля (А/м), плотности потока энергии (ППЭ, Вт/м 2 , мкВт/см 2), Т - время воздействия за смену (час.).

    3. Энергетическая экспозиция в диапазоне частот >= 300 МГц - 300 ГГц рассчитывается по формуле:

    ЭЭппэ = ППЭ х Т, (Вт/м 2).ч, (мкВт/см 2).ч, где ППЭ - плотность потока энергии (Вт/м 2 , мк Вт/см 2).

    В табл. 2 приведены предельно допустимые плотности потока энергии электромагнитных полей (ЭМП) в диапазоне частот 300 МГц-300000 ГГц и

    Таблица 2. Нормы облучения УВЧ и СВЧ

    время пребывания на рабочих местах и в местах возможного нахожде­ния персонала, профессионально связанного с воздей­ствием ЭМП.

    В табл. 3 приведено допустимое время пребывания человека в электрическом поле промышленной частоты сверхвысокого напряжения (400 кВ и выше).

    Таблица 3. Предельно допустимое время c напряжением 400 кВ и выше

    7. Экранирование как способ защиты от эмп.

    Инженерные защитные мероприятия строятся на использовании явления экранирования электромагнитных полей , либо наограничении эмиссионных параметров источника поля (снижении интенсивности излучения). При этом второй метод применяется в основном на этапе проектирования излучающего объекта. Электромагнитные излучения могут проникать в помещения через оконные и дверные проемы (явление дисперсии электромагнитных волн).

    При экранировании ЭМП в радиочастотных диапазонах используются разнообразные радиоотражающие и радиопоглощающие материалы.

    К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства. Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.

    Более удобными материалами для экранировки являются радиопоглощающие материалы. Листы поглощающих материалов могут быть одно- или многослойными. Многослойные - обеспечивают поглощение радиоволн в более широком диапазоне. Для улучшения экранирующего действия у многих типов радиопоглощающих материалов с одной стороны впрессована металлическая сетка или латунная фольга. При создании экранов эта сторона обращена в сторону, противоположную источнику излучения.

    Характеристики некоторых радиопоглощающих материалов приведены в табл.1.

    Таблица1

    Характеристики некоторых радиопоглощающих материалов

    Наименование материалов

    Тип марок

    Диапазон поглощенных волн, см

    Коэффициент отражения по мощности, %

    Ослабление проходящей мощности, %

    Резиновые коврики

    Магнитодиэлектри-ческие пластины

    Поглощающие покрытия на основе поролона

    «Болото»

    Ферритовые пластины

    Несмотря на то, что поглощающие материалы во многих отношениях более надежны, чем отражающие, применение их ограничивается высокой стоимостью и узостью спектра поглощения.

    В некоторых случаях стены покрывают специальными красками. В качестве токопроводящих пигментов в этих красках применяют коллоидное серебро, медь, графит, алюминий, порошкообразное золото. Обычная масляная краска обладает довольно большой отражающей способностью (до 30%), гораздо лучше в этом отношении известковое покрытие.

    Радиоизлучения могут проникать в помещения, где находятся люди через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется либо мелкоячеистая металлическая сетка (этот метод защиты не распространён по причине неэстетичности самой сетки и значительного ухудшения вентиляционного газообмена в помещении), либо металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов - медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. Будучи нанесенной на одну сторону поверхности стекла она ослабляет интенсивность излучения в диапазоне 0,8 – 150 см на 30 дБ (в 1000 раз). При нанесении пленки на обе поверхности стекла ослабление достигает 40 дБ (в 10000 раз). Металлизированное стекло горячего прессования имеет кроме экранирующих свойств повышенную механическую прочность и используется в особых случаях (например, для наблюдательных окон на атомных регенерационных установках).

    Экранирование дверных проемов в основном достигается за счет использования дверей из проводящих материалов (стальные двери).

    Для защиты населения от воздействия электромагнитных излучений могут применяться специальные строительные конструкции: металлическая сетка, металлический лист или любое другое проводящее покрытие, а также специально разработанные строительные материалы. В ряде случаев (защита помещений, расположенных относительно далеко от источников поля) достаточно использования заземленной металлической сетки, помещаемой под облицовку стен помещения или заделываемой в штукатурку.

    Ослабление ЭМП с помощью строительных материалов

    Материал

    Толщина, см

    Ослабление ППЭ, дБ

    Длина волны, см

    Кирпичная стена

    Шлакобетонная стена

    Штукатурная стена или деревянная перегородка

    Слой штукатурки

    Древесноволокнистая плита

    Окно с двойными рамами, стекло силикатное

    В сложных случаях (защита конструкций, имеющих модульную или некоробчатую структуру) могут применяться также различные пленки и ткани с электропроводящим покрытием.

    В последние годы в качестве радиоэкранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы обладают малой толщиной, легкостью, гибкостью; они могут дублироваться другими материалами (тканями, кожей, пленками), хорошо совмещаются со смолами и латексами.

    Механизм "отражения" ЭМП. Виды используемых материалов.

    Механизм отражения

    Отражение обусловлено в основном несоответствием волновых характеристик воздуха и материала, из которого изготовлен экран. Отражение электромагнитной энергии определяется через величины, выражаемые как отношение падающей энергии к отраженной (Вотр), которые обычно выражаются в децибелах, либо через коэффициент отражения, определяемый как величина, обратная (Вотр) .

    К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства.Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.

    Отражающие ЭМП РЧ экраны выполняются из металлических листов, сетки, проводящих пленок, ткани с микропроводом, металлизированных тканей на основе синтетических волокон или любых других материалов, имеющих высокую электропроводность.

    Механизм "поглощения" ЭМП. Виды используемых материалов.

    Поглощение ЭМП обусловлено диэлектрическими и магнитными потерями при взаимодействии электромагнитного излучения с радиопоглощающими материалами. В последних также имеют место рассеяние (вследствие структурной неоднородности Р. м.) и интерференция.

    Виды радиопоглощающих материалов (Р. м.)

      Немагнитные Р. м. подразделяют на интерференционные, градиентные и комбинированные.

      Интерференционные Р. м. состоят из чередующихся диэлектрических и проводящих слоев. В них интерферируют между собой волны, отразившиеся от электропроводящих слоев и от металлической поверхности защищаемого объекта.

      Градиентные Р. м. (наиболее обширный класс) имеют многослойную структуру с плавным или ступенчатым изменением комплексной диэлектрической проницаемости по толщине (обычно по гиперболическому закону). Их толщина сравнительно велика и составляет > 0,12 - 0,15 λмакс, где λмакс - максимальная рабочая длина волны. Внешний (согласующий) слой изготавливают из твёрдого диэлектрика с большим содержанием воздушных включений (пенопласт и др.), с диэлектрической проницаемостью, близкой к единице, остальные (поглощающие) слои - из диэлектриков с высокой диэлектрической проницаемостью (стеклотекстолит и др.) с поглощающим проводящим наполнителем (сажа, графит и т.п.). Условно к градиентным Р. м. относят также материалы с рельефной внешней поверхностью (образуемой выступами в виде шипов, конусов и пирамид), называемые шиловидными Р. м.; уменьшению коэффициента отражения в них способствует многократное отражение волн от поверхностей шипов (с поглощением энергии волн при каждом отражении).

      Комбинированные Р. м. - сочетание Р. м. градиентного и интерференционного типов. Они отличаются эффективностью действия в расширенном диапазоне волн.

    Различают Р. м. широкодиапазонные (λмакс/λмин > 3 - 5), узкодиапазонные (λмакс/λмин ~ 1,5 - 2,0) и рассчитанные на фиксированную (дискретную) длину волны (ширина диапазона < 10-15% λраб); λмин и λраб - минимальная и рабочая длины волн.

    Обычно Р. м. отражают 1 - 5 % электромагнитной энергии (некоторые - не более 0,01%) и способны поглощать потоки энергии плотностью 0,15 - 1,50 вт/см2 (пенокерамические - до 8 вт/см2). Интервал рабочих температур Р. м. с воздушным охлаждением от минус 60°С до плюс 650°С (у некоторых до 1315°С).


    Электричество вокруг нас

    Электромагнитное поле (определение из БСЭ) — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Исходя из этого определения не понятно, что является первичным - существование заряженных частиц или же наличие поля. Быть может только благодаря наличию электромагнитного поля частицы могут получать заряд. Также как и в истории с курицей и яйцом. Суть в том, что заряженные частицы и электромагнитное поле неотделимы друг от друга и друг без друга существовать не могут. Поэтому определение не даёт нам с вами возможности понять суть явления электромагнитного поля и единственное, что следует запомнить, что это особая форма материи ! Теория электромагнитного поля была разработана Джеймсом Максвеллом в 1865 г.

    Что такое электромагнитное поле? Можно представить себе, что мы живём в электромагнитной Вселенной, которая вся целиком и полностью пронизана электромагнитным полем, а различные частицы и вещества в зависимости от своего строения и свойств под воздействием электромагнитного поля приобретают положительный или отрицательный заряд, накапливают его, или же остаются электронейтральными. Соответственно электромагнитные поля можно разделить на два вида: статическое , то есть излучаемое заряженными телами (частицами) и неотъемлемое от них, и динамическое , распространяющееся в пространстве, будучи оторванным от источника, излучившего его. Динамическое электромагнитное поле в физике представляется в виде двух взаимноперпендикулярных волн: электрической (Е) и магнитной (Н).

    Тот факт, что электрическое поле порождается переменным магнитным полем,а магнитное поле - переменным электрическим, приводит к тому, что электрические и магнитные переменные поля не существуют по-отдельности друг от друга. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц напрямую связано с самими частицами. При ускоренном движении этих заряженных частиц электромагнитное поле "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника.

    Источники электромагнитных полей

    Природные (естественные) источники электромагнитных полей

    Природные (естественные) источники ЭМП делят на следующие группы:

  • электрическое и магнитное поле Земли;
  • радио излучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • атмосферное электричество;
  • биологический электромагнитный фон.
  • Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

    Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы. Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально. Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

    Атмосферное электричество – это электрические явления в земной атмосфере. В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца. Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

    Внеземные источники включают излучения за пределами атмосферы Земли.

    Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц. Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт. Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

    Антропогенные источники электромагнитных полей

    Антропогенные источники делятся на 2 группы:

    Источники низкочастотных излучений (0 - 3 кГц)

    Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

    Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

    Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

    К этой группе относятся функциональные передатчики - источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

    Основными техногенными источниками являются:

  • бытовые телеприёмники, СВЧ-печи, радиотелефоны и т.п. устройства;
  • электростанции, энергосиловые установки и трансформаторные подстанции;
  • широкоразветвлённые электрические и кабельные сети;
  • радиолокационные, радио- и телепередающие станции, ретрансляторы;
  • компьютеры и видеомониторы;
  • воздушные линии электропередач (ЛЭП).
  • Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

  • 5. Учет длительности пребывания человека в эмп при нормировании интенсивности электромагнитных полей.
  • 6. Понятие "дозы" излучения эмп. Нормирование длительности пребывания в зоне воздействия эмп по показателю дозы.
  • Дозовые уровни.
  • Предельно допустимые уровни электромагнитного поля частотой 50 Гц
  • Предельно допустимые уровни электромагнитных полей диапазона частот
  • 7. Экранирование как способ защиты от эмп.
  • 8. Санитарное нормирование шума. Принципы нормирования.
  • 9. Понятие "Уровень звукового давления". Физический смысл нулевого уровня звукового давления.
  • 10. Опасность и вред производственного шума. Нормирование широкополосного и тонального шума.
  • 11. Предельный спектр шума. Различия в предельных спектрах шума для различных видов деятельности.
  • Семейство нормировочных кривых шума (пс), рекомендованных iso:
  • СанПиН 2.2.2/2.4.1340-03
  • V. Требования к уровням шума и вибрации на рабочих местах, оборудованных пэвм
  • Приложение 1 Допустимые значения уровней звукового давления в октавных полосах частот и уровня звука, создаваемого пэвм
  • 13. Звукоизоляция. Принцип снижения шума. Примеры материалов и конструкций.
  • 13. Звукопоглощение. Принцип снижения шума. Примеры материалов и конструкций.
  • Звукопоглощение
  • Принцип снижения шума
  • Примеры материалов и конструкций
  • 15. Принципы нормирования освещенности рабочего места.
  • VI. Требования к освещению на рабочих местах, оборудованных пэвм
  • 16. Естественное освещение. Общие требования. Нормируемые показатели.
  • 17. Достоинства и недостатки освещения рабочих мест люминесцентными лампами
  • 18. Пульсации светового потока ламп. Причины появления и способы защиты.
  • 19. Напряженность зрительной работы и характеризующие ее показатели. Использование при нормировании освещенности.
  • 20. Показатели, характеризующие качество освещения рабочего места.
  • 21. Способы предотвращения слепящего действия систем освещения
  • 22. Требования к освещению на рабочих местах, оборудованных пэвм
  • 23. Требования к помещениям для работы с пэвм
  • 24. Требования к организации рабочих мест пользователей пэвм
    1. Нормируемые параметры ЭМП .

    СанПиН 2.2.4.1191-03

    ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ

    Устанавливают на рабочих местах:

      временные допустимые уровни (ВДУ) ослабления геомагнитного поля (ГМП),

      ПДУ электростатического поля (ЭСП),

      ПДУ постоянного магнитного поля (ПМП),

      ПДУ электрического и магнитного полей промышленной частоты 50 Гц (ЭП и МП ПЧ),

      ПДУ электромагнитных полей в диапазоне частот >= 10 кГц - 30 кГц,

      ПДУ электромагнитных полей в диапазоне частот >= 30 кГц - 300 ГГц.

    Временные допустимые уровни (вду) ослабления геомагнитного поля (гмп)

    Изменение вредности (А) в зависимости от интенсивности ЭМП (В).

    Временный допустимый коэффициент ослабления интенсивности геомагнитного поля на рабочих местах персонала в помещениях (объектах, технических средствах) в течение смены

    где |Но | - модуль вектора напряженности магнитного поля в открытом пространстве;

    |Нв | - модуль вектора напряженности магнитного поля на рабочем месте в помещении.

    Пду электростатического поля (эсп)

    Предельно допустимый уровень напряженности ЭСП равен 60 кВ/м в течение£1 ч.

    При напряженности менее 20 кВ/м время пребывания в ЭСП не регламентируется.

    В
    диапазоне напряженности 20...60 кВ/м допустимое время пребывания персонала в ЭСП без средств защиты (ч)

    где Е- фактическое значение напряженности ЭСП, кВ/м.

    Пду постоянного магнитного поля (пмп)

    1 А/м ~ 1,25 мкТл, 1 мкТл ~ 0,8 А/м.

    Напряженность МП линии электропередачи напряжением до 750 кВ

    обычно не превышает 20...25 А/м.

    Пду эмп промышленной частоты

    ПДУ ЭП

    Предельно допустимый уровень напряженности ЭП на рабочем месте в течение всей смены устанавливается равным 5 кВ/м.

    При E= 5 … 20 кВ/м допустимое время пребывания в ЭП Т = (50/Е) - 2, час

    При 20 < Е < 25 кВ/м допустимое время пребывания в ЭП составляет 10 мин.

    Пребывание в ЭП с напряженностью более 25 кВ/м без применения средств защиты не допускается.

    Внутри жилых зданий 0,5 кВ/м;

    На территории жилой застройки 1 кВ/м;

    В населенной местности, вне зоны жилой застройки, а также на территории огородов и садов 5 кВ/м;

    На участках пересечения воздушных линий (ВЛ) с автомобильными дорогами 10 кВ/м;

    В ненаселенной местности (незастроенные местности, хотя бы и частично посещаемые людьми, доступные для транспорта, и сель­скохозяйственные угодья) 15 кВ/м;

    В труднодоступной местности (не доступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения 20 кВ/м.

    ПДУ МП

    ПДУ воздействия периодического магнитного поля частотой 50 Гц

    Пду эмп радиочастотного диапазона

    (НЧ – ВЧ: 30 кГц-300 МГц)

    (СВЧ: 300 МГц - 300 ГГц)

    В основу гигиенического нормирования положен принцип действующей дозы.

    Оценка и нормирование ЭМП диапазона частот >= 30 кГц - 300 ГГц осуществляется по величине энергетической экспозиции (ЭЭ).

    Энергетическая экспозиция в диапазоне частот

    - >= 30 кГц - 300 МГц:

    ЭЭ F =
    ,

    ЭЭН =
    .

    - >= 300 МГц - 300 ГГц:

    ЭЭ ППЭ = ППЭ*Т, (Вт/м2)ч,(мкВт/см2)ч,

    где Е - напряженность электрического поля (В/м),

    Н - напряженность магнитного поля (А/м),

    Т - время воздействия за смену (час.).

    ППЭ - плотность потока энергии (Вт/м2, мкВт/см2).

    Предельно допустимые значения

    энергетической экспозиции для рабочих мест

    Диапазоны частот

    По электрической составляющей

    По магнитной составляющей

    По плотности потока энергии.

    (мкВт/см2) ч

    30 кГц-3 МГц

    300 МГц-300 ГГц

      Виды действия электромагнитных полей на человека.

    Характер воздействия ЭМП на организм определяется:

      частотой излучения;

      интенсивностью потока энергии (Е, Н, ППЭ)

      продолжительностью и режимом воздействия;

      размером облучаемой поверхности тела;

      индивидуальными особенностями организма;

      наличием сопутствующих вредных факторов, таких как: температура окружающей среды, шум, загазованность и другие факторы, которые снижают сопротивляемость организма.

    ВИДЫ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ НА ЖИВОЙ ОРГАНИЗМ

      Тепловое

      Нетепловое (информационное)



    Загрузка...